2023届河南省平顶山市第四十三中学中考数学四模试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( ) (A)33 (B)34 (C)35 (D)362下列计算正确的是( )A B C D3如图,在矩形ABCD中,E是AD上一点,沿CE折叠CDE,点D恰好落在AC的中点F处,若CD,则ACE的面积为()A1BC2D24明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼明明的速度小于亮亮的速度忽略掉头等时间明明从A地出发,同时亮亮从B地出发图中的折线段表示从开始到第二次相遇止,两人之间的距离米与行走时间分的函数关系的图象,则A明明的速度是80米分B第二次相遇时距离B地800米C出发25分时两人第一次相遇D出发35分时两人相距2000米5如图,AB是O的直径,点E为BC的中点,AB=4,BED=120°,则图中阴影部分的面积之和为( )A1BCD6如图:已知ABBC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是()A3B3.5C4D57有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的( )A中位数相等 B平均数不同 CA组数据方差更大 DB组数据方差更大8方程(m2)x2+3mx+1=0是关于x的一元二次方程,则( )Am±2Bm=2Cm=2Dm29一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A10%x330B(110%)x330C(110%)2x330D(1+10%)x33010下列四个图形中既是轴对称图形,又是中心对称图形的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11工人师傅常用角尺平分一个任意角做法如下:如图,AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合过角尺顶点C的射线OC即是AOB的平分线做法中用到全等三角形判定的依据是_12有下列等式:由a=b,得52a=52b;由a=b,得ac=bc;由a=b,得;由,得3a=2b;由a2=b2,得a=b其中正确的是_13圆锥的底面半径为4cm,高为5cm,则它的表面积为_ cm114如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_15已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_.16若一个多边形每个内角为140°,则这个多边形的边数是_17如图,在ABC中,CA=CB,ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为_三、解答题(共7小题,满分69分)18(10分)已知AB是O的直径,弦CD与AB相交,BAC40°(1)如图1,若D为弧AB的中点,求ABC和ABD的度数;(2)如图2,过点D作O的切线,与AB的延长线交于点P,若DPAC,求OCD的度数19(5分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD(结果保留两位小数)20(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率从概率的角度分析,你建议小明在第几题使用“求助”(直接写出答案)21(10分)如图,在ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF(1)求证:四边形BCFE是菱形;(2)若CE=4,BCF=120°,求菱形BCFE的面积22(10分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA求证:OCPPDA;若OCP与PDA的面积比为1:4,求边AB的长(2)如图2,在(1)的条件下,擦去AO和OP,连接BP动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作MEBP于点E试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由23(12分)已知C为线段上一点,关于x的两个方程与的解分别为线段的长,当时,求线段的长;若C为线段的三等分点,求m的值.24(14分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点(1)若点的横坐标为,求的面积;(用含的式子表示)(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:过点E作EMOA,垂足为M,A(1,0),B(0,2),OA-1,OB=2,又AOB=90°,AB=,AB/CD,ABO=CBG,BCG=90°,BCGAOB,BC=AB=,CG=2,CD=AD=AB=,DG=3,DE=DG=3,AE=4,BAD=90°,EAM+BAO=90°,BAO+ABO=90°,EAM=ABO,又EMA=90°,EAMABO,即,AM=8,EM=4,AM=9,E(9,4),k=4×9=36;故选D考点:反比例函数综合题2、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确故选D3、B【解析】由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求ACE的面积【详解】解:点F是AC的中点,AF=CF=AC,将CDE沿CE折叠到CFE,CD=CF=,DE=EF,AC=,在RtACD中,AD=1SADC=SAEC+SCDE,×AD×CD=×AC×EF+×CD×DE1×=EF+DE,DE=EF=1,SAEC=××1=故选B【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键4、B【解析】C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;A、当时,出现拐点,显然此时亮亮到达A地,利用速度路程时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;B、根据第二次相遇时距离B地的距离明明的速度第二次相遇的时间、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离明明的速度出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误【详解】解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,出发20分时两人第一次相遇,C选项错误;亮亮的速度为米分,两人的速度和为米分,明明的速度为米分,A选项错误;第二次相遇时距离B地距离为米,B选项正确;出发35分钟时两人间的距离为米,D选项错误故选:B【点睛】本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键5、C【解析】连接AE,OD,OEAB是直径, AEB=90°又BED=120°,AED=30°AOD=2AED=60°OA=ODAOD是等边三角形A=60°又点E为BC的中点,AED=90°,AB=ACABC是等边三角形,EDC是等边三角形,且边长是ABC边长的一半2,高是BOE=EOD=60°,和弦BE围成的部分的面积=和弦DE围成的部分的面积阴影部分的面积=故选C6、A【解析】根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案【详解】解:由ABBC,垂足为B,AB=3.5,点P是射线BC上的动点,得APAB,AP3.5,故选:A【点睛】本题考查垂线段最短的性质,解题关键是利用垂线段的性质7、D【解析】分别求出两组数据的中位数、平均数、方差,比较即可得出答案.【详解】A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,方差是:(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2 ÷5=2;B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,方差是:(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2 ÷5=12;两组数据的中位数不相等,平均数相等,B组方差更大.故选D.【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.8、D【解析】试题分析:根据一元二次方程的概念,可知m-20,解得m2.故选D9、D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=1故选D10、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合二、填空题(共7小题,每小题3分,满分21分)11、SSS【解析】由三边相等得COMCON,即由SSS判定三角全等做题时要根据已知条件结合判定方法逐个验证【详解】由图可知,CM=CN,又OM=ON,在MCO和NCO中,COMCON(SSS),AOC=BOC,即OC是AOB的平分线故答案为:SSS【点睛】本题考查了全等三角形的判定及性质要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养12、【解析】由a=b,得52a=52b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确,由a=b,得,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为可能为0,所以本选项不正确,由,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确,因为互为相反数的平方也相等,由a2=b2,得a=b,或a=-b,所以本选项错误, 故答案为: .13、【解析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=×底面半径的平方+底面周长×母线长÷1.【详解】底面半径为4cm,则底面周长=8cm,底面面积=16cm1;由勾股定理得,母线长=,圆锥的侧面面积,它的表面积=(16+4 )cm1= cm1 ,故答案为:.【点睛】本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.14、 【解析】由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明DGFDAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可【详解】四边形ABCD、CEFG均为正方形,CD=AD=3,CG=CE=5,DG=2,在RtDGF中, DF=,FDG+GDI=90°,GDI+IDA=90°,FDG=IDA又DAI=DGF,DGFDAI,即,解得:DI=,矩形DFHI的面积是=DFDI=,故答案为:【点睛】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键15、16或1【解析】题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】(1)当三角形的三边是5,5,6时,则周长是16;(2)当三角形的三边是5,6,6时,则三角形的周长是1;故它的周长是16或1故答案为:16或1【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键16、九【解析】根据多边形的内角和定理:180°(n-2)进行求解即可【详解】由题意可得:180°×(n2)=140°×n,解得n=9,故多边形是九边形.故答案为9.【点睛】本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.17、【解析】连接CD,根据题意可得DCEBDF,阴影部分的面积等于扇形的面积减去BCD的面积【详解】解:连接CD,作DMBC,DNACCA=CB,ACB=90°,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:CA=CB,ACB=90°,点D为AB的中点,CD平分BCA,又DMBC,DNAC,DM=DN,GDH=MDN=90°,GDM=HDN,则在DMG和DNH中, ,DMGDNH(AAS),S四边形DGCH=S四边形DMCN=则阴影部分的面积是: 故答案为:【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键三、解答题(共7小题,满分69分)18、(1)45°;(2)26°【解析】(1)根据圆周角和圆心角的关系和图形可以求得ABC和ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得OCD的大小【详解】(1)AB是O的直径,BAC=38°, ACB=90°,ABC=ACBBAC=90°38°=52°,D为弧AB的中点,AOB=180°,AOD=90°,ABD=45°;(2)连接OD,DP切O于点D,ODDP,即ODP=90°,DPAC,BAC=38°,P=BAC=38°,AOD是ODP的一个外角,AOD=P+ODP=128°,ACD=64°,OC=OA,BAC=38°,OCA=BAC=38°,OCD=ACDOCA=64°38°=26°【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答19、51.96米【解析】先根据三角形外角的性质得出ACB=30°,进而得出AB=BC=1,在RtBDC中,,即可求出CD的长【详解】解:CBD=1°,CAB=30°,ACB=30°AB=BC=1在RtBDC中,(米)答:文峰塔的高度CD约为51.96米【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答20、(1);(2);(3)第一题.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;(3)建议小明在第一题使用“求助”理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=,因为,所以建议小明在第一题使用“求助”【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.21、(1)见解析;(2)见解析【解析】(1)从所给的条件可知,DE是ABC中位线,所以DEBC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形(2)因为BCF=120°,所以EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可【详解】解:(1)证明:D、E分别是AB、AC的中点,DEBC且2DE=BC又BE=2DE,EF=BE,EF=BC,EFBC四边形BCFE是平行四边形又BE=FE,四边形BCFE是菱形(2)BCF=120°,EBC=60°EBC是等边三角形菱形的边长为4,高为菱形的面积为4×=22、(1)证明见解析;10;(2)线段EF的长度不变,它的长度为2. 【解析】试题分析:(1)先证出C=D=90°,再根据1+3=90°,1+2=90°,得出2=3,即可证出OCPPDA;根据OCP与PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;(2)作MQAN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据MEPQ,得出EQ=PQ,根据QMF=BNF,证出MFQNFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB的长,最后代入EF=PB即可得出线段EF的长度不变试题解析:(1)如图1,四边形ABCD是矩形,C=D=90°,1+3=90°,由折叠可得APO=B=90°,1+2=90°,2=3,又D=C,OCPPDA;OCP与PDA的面积比为1:4,=,CP=AD=4,设OP=x,则CO=8x,在RtPCO中,C=90°,由勾股定理得 :,解得:x=5,CD=AB=AP=2OP=10,边CD的长为10;(2)作MQAN,交PB于点Q,如图2,AP=AB,MQAN,APB=ABP=MQP,MP=MQ,BN=PM,BN=QMMP=MQ,MEPQ,EQ=PQMQAN,QMF=BNF,在MFQ和NFB中,QFM=NFB,QMF=BNF,MQ=BN,MFQNFB(AAS),QF=QB,EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,C=90°,PB=,EF=PB=,在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为考点:翻折变换(折叠问题);矩形的性质;相似形综合题23、(1);(2)或1.【解析】(1)把m=2代入两个方程,解方程即可求出AC、BC的长,由C为线段上一点即可得AB的长;(2)分别解两个方程可得,根据为线段的三等分点分别讨论为线段靠近点的三等分点和为线段靠近点的三等分点两种情况,列关于m的方程即可求出m的值.【详解】(1)当时,有,由方程,解得,即.由方程,解得,即.因为为线段上一点,所以.(2)解方程,得,即.解方程,得,即.当为线段靠近点的三等分点时,则,即,解得.当为线段靠近点的三等分点时,则,即,解得.综上可得,或1.【点睛】本题考查一元一次方程的几何应用,注意讨论C点的位置,避免漏解是解题关键.24、(1);(2)不能成为平行四边形,理由见解析【解析】(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PDx轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出MPD的面积;(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PDx轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PDPC,由此即可得出四边形BDMC不能成为平行四边形【详解】解:(1)点在直线上,点在的图像上,设,则记的面积为,(2)当点为中点时,其坐标为,直线在轴下方的部分沿轴翻折得表示的函数表达式是:,与不能互相平分,四边形不能成为平行四边形【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形