2023届湖北省随州市广水市西北协作区中考试题猜想数学试卷含解析.doc
-
资源ID:87840766
资源大小:881KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届湖北省随州市广水市西北协作区中考试题猜想数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A0.25×105B0.25×106C2.5×105D2.5×1062如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )ABCD3一元二次方程(x+3)(x-7)=0的两个根是Ax1=3,x2=-7 Bx1=3,x2=7Cx1=-3,x2=7 Dx1=-3,x2=-74光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为ABCD5如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CEx轴交双曲线于点E,连接BE,则BCE的面积为()A5B6C7D86小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为()A91,88B85,88C85,85D85,84.57如果与互补,与互余,则与的关系是( )ABCD以上都不对8在0.3,3,0,这四个数中,最大的是()A0.3B3C0D9世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是A20、20B30、20C30、30D20、3010下列4个点,不在反比例函数图象上的是( )A( 2,3)B(3,2)C(3,2)D( 3,2)二、填空题(共7小题,每小题3分,满分21分)11如图,以锐角ABC的边AB为直径作O,分别交AC,BC于E、D两点,若AC14,CD4,7sinC3tanB,则BD_12若点与点关于原点对称,则_13如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上()AC的长等于_;()在线段AC上有一点D,满足AB2=ADAC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_14如图,点A在双曲线上,ABx轴于B,且AOB的面积SAOB=2,则k=_15计算a3÷a2a的结果等于_16如图,矩形ABCD中,如果以AB为直径的O沿着滚动一周,点恰好与点C重合,那么 的值等于_(结果保留两位小数)17如图ABC中,AB=AC=8,BAC=30°,现将ABC绕点A逆时针旋转30°得到ACD,延长AD、BC交于点E,则DE的长是_三、解答题(共7小题,满分69分)18(10分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_人,扇形统计图中D类所对应扇形的圆心角为_度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率19(5分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点动点C、D分别在直线AB、OB上,将BCD沿着CD折叠,得B'CD()如图1,若CDAB,点B'恰好落在点A处,求此时点D的坐标;()如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;()若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可)20(8分)阅读材料,解答下列问题:神奇的等式当ab时,一般来说会有a2+ba+b2,然而当a和b是特殊的分数时,这个等式却是成立的例如:()2+=+,()2+=+,()2+=+()2,()2+=+()2,(1)特例验证:请再写出一个具有上述特征的等式: ;(2)猜想结论:用n(n为正整数)表示分数的分母,上述等式可表示为: ;(3)证明推广:(2)中得到的等式一定成立吗?若成立,请证明;若不成立,说明理由;等式()2+=+()2(m,n为任意实数,且n0)成立吗?若成立,请写出一个这种形式的等式(要求m,n中至少有一个为无理数);若不成立,说明理由21(10分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?22(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.23(12分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图)请回答以下问题:(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度(2)利用样本估计该校初三学生选择“中技”观点的人数(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答)24(14分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min,然后他再追赶,待爸爸出发24min时,妈妈来电话,有急事,要求立即回去于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s(单位:m)关于小芳出发时间t(单位:min)的函数图象如图,请结合图象信息解答下列问题:(1)小芳和爸爸上山时的速度各是多少?(2)求出爸爸下山时CD段的函数解析式;(3)因山势特点所致,二人相距超过120m就互相看不见,求二人互相看不见的时间有多少分钟?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而故选D2、C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.3、C【解析】根据因式分解法直接求解即可得【详解】(x+3)(x7)=0,x+3=0或x7=0,x1=3,x2=7,故选C【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.4、C【解析】科学记数法的表示形式为的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将9500000000000km用科学记数法表示为故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、C【解析】作辅助线,构建全等三角形:过D作GHx轴,过A作AGGH,过B作BMHC于M,证明AGDDHCCMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论【详解】解:过D作GHx轴,过A作AGGH,过B作BMHC于M,设D(x,),四边形ABCD是正方形,ADCDBC,ADCDCB90°,易得AGDDHCCMB(AAS),AGDHx1,DGBM,GQ1,DQ,DHAGx1,由QG+DQBMDQ+DH得:11x,解得x2,D(2,3),CHDGBM14,AGDH1x1,点E的纵坐标为4,当y4时,x,E(,4),EH2,CECHHE4,SCEBCEBM××47;故选C【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题6、D【解析】试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D考点:众数,中位数点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题7、C【解析】根据1与2互补,2与1互余,先把1、1都用2来表示,再进行运算【详解】1+2=180°1=180°-2又2+1=90°1=90°-21-1=90°,即1=90°+1故选C【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度8、A【解析】根据正数大于0,0大于负数,正数大于负数,比较即可【详解】-3-00.3最大为0.3故选A【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型9、C【解析】分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.点睛:考查众数和中位数的概念,熟记概念是解题的关键.10、D【解析】分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于-6,就在函数图象上解答:解:原式可化为:xy=-6,A、2×(-3)=-6,符合条件;B、(-3)×2=-6,符合条件;C、3×(-2)=-6,符合条件;D、3×2=6,不符合条件故选D二、填空题(共7小题,每小题3分,满分21分)11、1【解析】如图,连接AD,根据圆周角定理可得ADBC在RtADC中,sinC= ;在RtABD中,tanB=已知7sinC=3tanB,所以7×=3×,又因AC14,即可求得BD=1 点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键12、1【解析】点P(m,2)与点Q(3,n)关于原点对称,m=3,n=2,则(m+n)2018=(3+2)2018=1,故答案为113、5 见解析 【解析】(1)由勾股定理即可求解;(2)寻找格点M和N,构建与ABC全等的AMN,易证MNAC,从而得到MN与AC的交点即为所求D点.【详解】(1)AC=;(2)如图,连接格点M和N,由图可知:AB=AM=4,BC=AN=,AC=MN=,ABCMAN,AMN=BAC,MAD+CAB=MAD+AMN=90°,MNAC,易解得MAN以MN为底时的高为,AB2=ADAC,AD=AB2÷AC=,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.14、4【解析】:由反比例函数解析式可知:系数,SAOB=2即,;又由双曲线在二、四象限k0,k=-415、a1【解析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可【详解】解:原式=a31+1=a1故答案为a1【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则16、3.1【解析】分析:由题意可知:BC的长就是O的周长,列式即可得出结论详解:以AB为直径的O沿着滚动一周,点恰好与点C重合,BC的长就是O的周长,AB=BC,=3.1故答案为3.1点睛:本题考查了圆的周长以及线段的比解题的关键是弄懂BC的长就是O的周长17、 【解析】过点作于,根据三角形的性质及三角形内角和定理可计算再由旋转可得,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.【详解】如图,过点作于, ,将绕点逆时针旋转,使点落在点处,此时点落在点处, 在中, ,在中,故答案为【点睛】本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质三、解答题(共7小题,满分69分)18、48;105°;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案试题解析:(1)12÷25%=48(人) 14÷48×360°=105° 48(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:A1A1A2A2A1A1A2A2由上表可得:考点:统计图、概率的计算19、(1)D(0,);(1)C(116,1118);(3)B'(1+,0),(1,0).【解析】(1)设OD为x,则BD=AD=3,在RTODA中应用勾股定理即可求解;(1)由题意易证BDCBOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CEAO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=BC,再利用特殊角的三角函数可逐一求解.【详解】()设OD为x,点A(3,0),点B(0,),AO=3,BO=AB=6折叠BD=DA在RtADO中,OA1+OD1=DA19+OD1=(OD)1OD=D(0,)()折叠BDC=CDO=90°CDOA且BD=AC,BD=18OD=(18)=18tanABO=,ABC=30°,即BAO=60°tanABO=,CD=116D(116,1118)()如图:过点C作CEAO于ECEAOOE=1,且AO=3AE=1,CEAO,CAE=60°ACE=30°且CEAOAC=1,CE=BC=ABACBC=61=4若点B'落在A点右边,折叠BC=B'C=4,CE=,CEOAB'E=OB'=1+B'(1+,0)若点B'落在A点左边,折叠BC=B'C=4,CE=,CEOAB'E=OB'=1B'(1,0)综上所述:B'(1+,0),(1,0)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B点的两种情况是解题关键.20、(1)()1+=+()1;(1)()1+=+()1;(3)成立,理由见解析;成立,理由见解析【解析】(1)根据题目中的等式列出相同特征的等式即可;(1)根据题意找出等式特征并用n表达即可;(3)先后证明左右两边的等式的结果,如果结果相同则成立;先证明等式是否成立,如果成立再根据等式的特征写出m,n至少有一个为无理数的等式.【详解】解:(1)具有上述特征的等式可以是()1+=+()1,故答案为()1+=+()1;(1)上述等式可表示为()1+=+()1,故答案为()1+=+()1;(3)等式成立,证明:左边=()1+=+=,右边=+()1=,左边=右边,等式成立;此等式也成立,例如:()1+=+()1【点睛】本题考查了规律的知识点,解题的关键是根据题目中的等式找出其特征.21、A、B两种型号的空调购买价分别为2120元、2320元【解析】试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:解得:答:A、B两种型号的空调购买价分别为2120元、2320元22、(1)甲,乙两种型号设备每台的价格分别为12万元和10万元(2)有6种购买方案(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台【解析】(1)设甲、乙两种型号设备每台的价格分别为万元和万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备台,乙型设备台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m的不等式,解之即可由m的值确定方案,然后进行比较,做出选择即可【详解】(1)设甲、乙两种型号设备每台的价格分别为万元和万元,由题意得:,解得:,则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备台,乙型设备台,则,,取非负整数,有6种购买方案;(3)由题意:,为4或5,当时,购买资金为:(万元),当时,购买资金为:(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.23、(4)A高中观点4 446;(4)456人;(4)【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;(4)800×44%=456(人),估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种所以恰好选到4位女同学的概率=考点:4列表法与树状图法;4用样本估计总体;4扇形统计图24、(1)小芳上山的速度为20m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x288(24x40);(3)二人互相看不见的时间有7.1分钟【解析】分析:(1)根据速度=路程÷时间可求出小芳上山的速度;根据速度=路程÷时间+小芳的速度可求出爸爸上山的速度;(2)根据爸爸及小芳的速度结合点C的横坐标(6+24=30),可得出点C的坐标,由点D的横坐标比点E少4可得出点D的坐标,再根据点C、D的坐标利用待定系数法可求出CD段的函数解析式;(3)根据点D、E的坐标利用待定系数法可求出DE段的函数解析式,分别求出CD、DE段纵坐标大于120时x的取值范围,结合两个时间段即可求出结论详解:(1)小芳上山的速度为120÷6=20(m/min),爸爸上山的速度为120÷(216)+20=28(m/min)答:小芳上山的速度为20m/min,爸爸上山的速度为28m/min(2)(2820)×(24+621)=72(m),点C的坐标为(30,72);二人返回山下的时间相差4min,444=40(min),点D的坐标为(40,192)设爸爸下山时CD段的函数解析式为y=kx+b,将C(30,72)、D(40,192)代入y=kx+b,解得:答:爸爸下山时CD段的函数解析式为y=12x288(24x40)(3)设DE段的函数解析式为y=mx+n,将D(40,192)、E(44,0)代入y=mx+n,解得:,DE段的函数解析式为y=48x+2112(40x44)当y=12x288120时,34x40;当y=48x+2112120时,40x41.141.134=7.1(min)答:二人互相看不见的时间有7.1分钟点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据点C、D的坐标,利用待定系数法求出CD段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD、DE段纵坐标大于120时x的取值范围