2023届浙江省宁波七中学教育集团中考数学考试模拟冲刺卷含解析.doc
-
资源ID:87840957
资源大小:851KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届浙江省宁波七中学教育集团中考数学考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在RtABC中,ACB90°,CD是AB边上的中线,AC8,BC6,则ACD的正切值是()ABCD2若点A(a,b),B(,c)都在反比例函数y的图象上,且1c0,则一次函数y(bc)x+ac的大致图象是()ABCD3已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方下列结论:;其中正确结论的个数是( )个A4个B3个C2个D1个4已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )ABCD52016的相反数是( )ABCD6如图,菱形ABCD的边长为2,B=30°动点P从点B出发,沿 B-C-D的路线向点D运动设ABP的面积为y(B、P两点重合时,ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )ABCD7若关于的一元二次方程有两个不相等的实数根,则的取值范围( )ABC且D8化简:-,结果正确的是()A1BCD9一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()ABCD10五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A2、40 B42、38 C40、42 D42、40二、填空题(共7小题,每小题3分,满分21分)11点A(x1,y1)、B(x1,y1)在二次函数y=x14x1的图象上,若当1x11,3x14时,则y1与y1的大小关系是y1_y1(用“”、“”、“=”填空)12函数中,自变量的取值范围是_13如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于_.14对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,=0.02;机床乙:=10,=0.06,由此可知:_(填甲或乙)机床性能好.15用一张扇形纸片围成一个圆锥的侧面(接缝处不计),若这个扇形纸片的面积是90cm2,围成的圆锥的底面半径为15cm,则这个圆锥的母线长为_cm16函数中自变量x的取值范围是_;函数中自变量x的取值范围是_17二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为_三、解答题(共7小题,满分69分)18(10分)如图,在ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线ABBC以每秒1个单位长度的速度向中点C运动,过点P作PQAB,交折线ADDC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR设PQR与ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒)(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,PCD是等腰三角形时所有的t值19(5分)如图,在 RtABC 中,C=90°,AC=3,BC=4,ABC 的平分线交边 AC于点 D,延长 BD 至点 E,且BD=2DE,连接 AE.(1)求线段 CD 的长;(2)求ADE 的面积.20(8分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F(1)求证:ADEBFE;(2)若DF平分ADC,连接CE,试判断CE和DF的位置关系,并说明理由21(10分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图根据图中信息求出m= ,n= ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率22(10分)如图,在ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1求:ABD的面积23(12分)已知:如图,A、C、F、D在同一直线上,AFDC,ABDE,BCEF,求证:ABCDEF24(14分)(1)问题发现:如图,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;(2)深入探究:如图,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使ABC=AMN,AM=MN,连接CN,试探究ABC与ACN的数量关系,并说明理由;(3)拓展延伸:如图,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据直角三角形斜边上的中线等于斜边的一半可得CDAD,再根据等边对等角的性质可得AACD,然后根据正切函数的定义列式求出A的正切值,即为tanACD的值【详解】CD是AB边上的中线,CDAD,AACD,ACB90°,BC6,AC8,tanA,tanACD的值故选D【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出AACD是解本题的关键2、D【解析】将,代入,得,然后分析与的正负,即可得到的大致图象.【详解】将,代入,得,即,即与异号又,故选D【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.3、B【解析】分析:根据已知画出图象,把x=2代入得:4a2b+c=0,把x=1代入得:y=ab+c>0,根据不等式的两边都乘以a(a<0)得:c>2a,由4a2b+c=0得而0<c<2,得到即可求出2ab+1>0.详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=2代入得:4a2b+c=0,正确;把x=1代入得:y=ab+c>0,如图A点,错误;(2,0)、(x1,0),且1<x1,取符合条件1<x1<2的任何一个x1,2x1<2,由一元二次方程根与系数的关系知 不等式的两边都乘以a(a<0)得:c>2a, 2a+c>0,正确;由4a2b+c=0得 而0<c<2, 1<2ab<02ab+1>0,正确.所以三项正确故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.4、D【解析】此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM上的点(P)重合,而选项C还原后两个点不能够重合故选D点评:本题考核立意相对较新,考核了学生的空间想象能力5、C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.6、C【解析】先分别求出点P从点B出发,沿BCD向终点D匀速运动时,当0x2和2x4时,y与x之间的函数关系式,即可得出函数的图象【详解】由题意知,点P从点B出发,沿BCD向终点D匀速运动,则当0x2,y=x,当2x4,y=1,由以上分析可知,这个分段函数的图象是C故选C7、C【解析】根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论【详解】解:关于x的一元二次方程有两个不相等的实数根, ,解得:k<1且k1故选:C【点睛】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键8、B【解析】先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.【详解】【点睛】本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.9、B【解析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.【点睛】掌握分类讨论的方法是本题解题的关键.10、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.二、填空题(共7小题,每小题3分,满分21分)11、【解析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,1x11,3x14,A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,y1y1故答案为12、【解析】根据分式有意义的条件是分母不为2;分析原函数式可得关系式x12,解得答案【详解】根据题意得x12,解得:x1;故答案为:x1【点睛】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为213、4.【解析】只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.【详解】解:根据梯形的中位线定理“梯形的中位线等于两底和的一半”,则另一条底边长.故答案为:4【点睛】本题考查梯形中位线,用到的知识点为:梯形的中位线=(上底下底)14、甲【解析】试题分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案试题解析:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好故答案为甲考点:1.方差;2.算术平均数15、1【解析】设这个圆锥的母线长为xcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到215x=90,然后解方程即可【详解】解:设这个圆锥的母线长为xcm,根据题意得215x=90,解得x=1,即这个圆锥的母线长为1cm故答案为1【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长16、x2 x3 【解析】根据分式的意义和二次根式的意义,分别求解【详解】解:根据分式的意义得2-x0,解得x2;根据二次根式的意义得2x-60,解得x3.故答案为: x2, x3.【点睛】数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数17、-1【解析】将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值【详解】解:二次函数y=(a-1)x2-x+a2-1 的图象经过原点, a2-1=2, a=±1, a-12, a1, a的值为-1 故答案为-1【点睛】本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2三、解答题(共7小题,满分69分)18、(1);(2)(9t);(3)S =t2+t;S=t2+1S=(9t)2;(3)3或或4或【解析】(1)根据题意点R与点B重合时t+t=3,即可求出t的值;(2)根据题意运用t表示出PQ即可;(3)当点R落在ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)将线段PQ绕点P顺时针旋转90°,得到线段PR,PQ=PR,QPR=90°,QPR为等腰直角三角形当运动时间为t秒时,AP=t,PQ=PQ=APtanA=t点R与点B重合,AP+PR=t+t=AB=3,解得:t=(2)当点P在BC边上时,3t9,CP=9t,tanA=,tanC=,sinC=,PQ=CPsinC=(9t)(3)如图1中,当t3时,重叠部分是四边形PQKB作KMAR于MKBRQAR, =, =,KM=(t3)=t,S=SPQRSKBR=×(t)2×(t3)(t)=t2+t如图2中,当3t3时,重叠部分是四边形PQKBS=SPQRSKBR=×3×3×t×t=t2+1如图3中,当3t9时,重叠部分是PQKS=SPQC=××(9t)(9t)=(9t)2(3)如图3中,当DC=DP1=3时,易知AP1=3,t=3当DC=DP2时,CP2=2CD,BP2=,t=3+当CD=CP3时,t=4当CP3=DP3时,CP3=2÷,t=9=综上所述,满足条件的t的值为3或或4或【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题19、(1);(2).【解析】分析:(1)过点D作DHAB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;(2)根据三角形的面积公式计算详解:(1)过点D作DHAB,垂足为点HBD平分ABC,C=90°,DH=DC=x,则AD=3xC=90°,AC=3,BC=4,AB=1,即CD=; (2)BD=2DE, 点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键20、(1)见解析;(1)见解析【解析】(1)由全等三角形的判定定理AAS证得结论(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,1=1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CEDF【详解】解:(1)证明:如图,四边形ABCD是平行四边形,ADBC又点F在CB的延长线上,ADCF1=1点E是AB边的中点,AE=BE,在ADE与BFE中,ADEBFE(AAS)(1)CEDF理由如下:如图,连接CE,由(1)知,ADEBFE,DE=FE,即点E是DF的中点,1=1DF平分ADC,1=22=1CD=CFCEDF21、(1)100、35;(2)补图见解析;(3)800人;(4) 【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得详解:(1)被调查的总人数m=10÷10%=100人,支付宝的人数所占百分比n%=×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比22、2.【解析】试题分析:由勾股定理的逆定理证明ADC是直角三角形,C=90°,再由勾股定理求出BC,得出BD,即可得出结果解:在ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,ADC是直角三角形,C=90°,在RtABC中,BC=16,BD=BCDC=169=7,ABD的面积=×7×12=223、证明见解析【解析】试题分析:首先根据AF=DC,可推得AFCF=DCCF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明ABCDEF试题解析:AF=DC,AFCF=DCCF,即AC=DF;在ABC和DEF中 ABCDEF(SSS) 24、(1)NCAB;理由见解析;(2)ABC=ACN;理由见解析;(3);【解析】(1)根据ABC,AMN为等边三角形,得到AB=AC,AM=AN且BAC=MAN=60°从而得到BAC-CAM=MAN-CAM,即BAM=CAN,证明BAMCAN,即可得到BM=CN(2)根据ABC,AMN为等腰三角形,得到AB:BC=1:1且ABC=AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到BAC=MAN,根据相似三角形的性质即可得到结论;(3)如图3,连接AB,AN,根据正方形的性质得到ABC=BAC=45°,MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案【详解】(1)NCAB,理由如下:ABC与MN是等边三角形,AB=AC,AM=AN,BAC=MAN=60°,BAM=CAN,在ABM与ACN中, ,ABMACN(SAS),B=ACN=60°,ANC+ACN+CAN=ANC+60°+CAN=180°,ANC+MAN+BAM=ANC+60°+CAN=BAN+ANC=180°,CNAB; (2)ABC=ACN,理由如下:=1且ABC=AMN,ABCAMN,AB=BC,BAC=(180°ABC),AM=MNMAN=(180°AMN),ABC=AMN,BAC=MAN,BAM=CAN,ABMACN,ABC=ACN;(3)如图3,连接AB,AN,四边形ADBC,AMEF为正方形,ABC=BAC=45°,MAN=45°,BACMAC=MANMAC即BAM=CAN,ABMACN,=cos45°=,BM=2,CM=BCBM=8,在RtAMC,AM=,EF=AM=2【点睛】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键