2023届重庆市江北区巴蜀中学中考联考数学试题含解析.doc
-
资源ID:87840964
资源大小:608.50KB
全文页数:14页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届重庆市江北区巴蜀中学中考联考数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元ABCD2在函数y中,自变量x的取值范围是( )Ax1Bx1且x0Cx0且x1Dx0且x13如图,ADBC,AC平分BAD,若B40°,则C的度数是()A40°B65°C70°D80°4cos45°的值是( )A B C D15下列图标中,是中心对称图形的是()ABCD6|3|的值是( )A3BC3D7如图,在ABC中,B90°,AB3cm,BC6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则PBQ的面积S随出发时间t的函数关系图象大致是()ABCD8下列运算结果正确的是()A3aa=2 B(ab)2=a2b2Ca(a+b)=a2+b D6ab2÷2ab=3b9如图是某零件的示意图,它的俯视图是()ABCD10如图,A、B、C是O上的三点,BAC30°,则BOC的大小是()A30°B60°C90°D45°二、填空题(共7小题,每小题3分,满分21分)11抛物线y=x22x+3的对称轴是直线_12如图,ABC内接于O,AB是O的直径,点D在圆O上,BDCD,AB10,AC6,连接OD交BC于点E,DE_13分解因式:_14已知抛物线y=ax2+bx+c=0(a0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 _15把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为 cm16在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为_ 人17计算:21+=_三、解答题(共7小题,满分69分)18(10分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲8 80.4乙 9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 (填“变大”、“变小”或“不变”)19(5分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游租车公司:按日收取固定租金80元,另外再按租车时间计费共享汽车:无固定租金,直接以租车时间(时)计费如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:(1)分别求出y1、y2与x的函数表达式;(2)请你帮助小丽一家选择合算的租车方案20(8分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_环,乙命中环数的众数是_环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小(填“变大”、“变小”或“不变”)21(10分)如图,点D为O上一点,点C在直径BA的延长线上,且CDA=CBD判断直线CD和O的位置关系,并说明理由过点B作O的切线BE交直线CD于点E,若AC=2,O的半径是3,求BE的长22(10分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量(2)求当0x60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围23(12分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DEAB,BECD(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD24(14分)如图,已知,求证 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得0.8×200=x+40解得:x=120答:商品进价为120元故选:B【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键2、C【解析】根据分式和二次根式有意义的条件进行计算即可【详解】由题意得:x2且x22解得:x2且x2故x的取值范围是x2且x2故选C【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键3、C【解析】根据平行线性质得出B+BAD180°,CDAC,求出BAD,求出DAC,即可得出C的度数【详解】解:ADBC,B+BAD180°,B40°,BAD140°,AC平分DAB,DACBAD70°,ABC,CDAC70°,故选C【点睛】本题考查了平行线性质和角平分线定义,关键是求出DAC或BAC的度数4、C【解析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45°= .故选:C.【点睛】本题考查特殊角的三角函数值.5、B【解析】根据中心对称图形的概念 对各选项分析判断即可得解【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合6、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数, 故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.7、C【解析】根据题意表示出PBQ的面积S与t的关系式,进而得出答案【详解】由题意可得:PB3t,BQ2t,则PBQ的面积SPBBQ(3t)×2tt2+3t,故PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下故选C【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键8、D【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键9、C【解析】物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【点睛】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.10、B【解析】【分析】欲求BOC,又已知一圆周角BAC,可利用圆周角与圆心角的关系求解【详解】BAC=30°,BOC=2BAC =60°(同弧所对的圆周角是圆心角的一半),故选B【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半二、填空题(共7小题,每小题3分,满分21分)11、x=1【解析】把解析式化为顶点式可求得答案【详解】解:y=x2-2x+3=(x-1)2+2,对称轴是直线x=1,故答案为x=1【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)12、1【解析】先利用垂径定理得到ODBC,则BE=CE,再证明OE为ABC的中位线得到,入境计算ODOE即可【详解】解:BDCD,ODBC,BECE,而OAOB,OE为ABC的中位线,DEODOE531故答案为1【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.13、3(m-1)2【解析】试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).14、或x=-1【解析】由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴【详解】点A的坐标为(-2,0),线段AB的长为8,点B的坐标为(1,0)或(-10,0)抛物线y=ax2+bx+c(a0)与x轴交于A、B两点,抛物线的对称轴为直线x=2或x=-1故答案为x=2或x=-1【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键15、1【解析】过点O作OMEF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在RtMOF中利用勾股定理求得OF的长即可【详解】过点O作OMEF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80r,MF=40,在RtOMF中,OM2+MF2=OF2,即(80r)2+402=r2,解得:r=1cm故答案为116、35【解析】分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),则本次捐款20元的有:80(20+10+15)=35(人),故答案为:35.点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.17、【解析】根据负整指数幂的性质和二次根式的性质,可知=.故答案为.三、解答题(共7小题,满分69分)18、(1)填表见解析;(2)理由见解析;(3)变小【解析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.(3)根据方差公式求解:如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小【详解】试题分析:试题解析:解:(1)甲的众数为8,乙的平均数=(5+9+7+10+9)=8,乙的中位数为9.故填表如下:平均数众数中位数方差甲8 8 80.4乙 8 9 9 3.2(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小考点:1.方差;2.算术平均数;3.中位数;4.众数19、(1)y1=kx+80,y2=30x;(2)见解析【解析】(1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;(2)分y1=y2,y1y2,y1y2三种情况分析即可.【详解】解:(1)由题意,设y1=kx+80,将(2,110)代入,得110=2k+80,解得k=15,则y1与x的函数表达式为y1=15x+80;设y2=mx,将(5,150)代入,得150=5m,解得m=30,则y2与x的函数表达式为y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1y2得,15x+8030x,解得x;由y1y2得,15x+8030x,解得x故当租车时间为小时时,两种选择一样;当租车时间大于小时时,选择租车公司合算;当租车时间小于小时时,选择共享汽车合算【点睛】本题考查了一次函数的应用及分类讨论的数学思想,解答本题的关键是掌握待定系数法求函数解析式的方法.20、(1)8, 6和9;(2)甲的成绩比较稳定;(3)变小 【解析】(1)根据众数、中位数的定义求解即可;(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;(3)根据方差公式进行求解即可【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;故答案为8,6和9;(2)甲的平均数是:(7+8+8+8+9)÷5=8,则甲的方差是: (7-8)2+3(8-8)2+(9-8)2=0.4,乙的平均数是:(6+6+9+9+10)÷5=8,则甲的方差是: 2(6-8)2+2(9-8)2+(10-8)2=2.8,所以甲的成绩比较稳定;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小故答案为变小【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差通常用s2来表示,计算公式是:s2=(x1-)2+(x2-)2+(xn-)2;方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好也考查了算术平均数、中位数和众数21、解:(1)直线CD和O的位置关系是相切,理由见解析(2)BE=1【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得DAB+DBA=90°,再由CDA=CBD可得CDA+ADO=90°,从而得CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可试题解析:(1)直线CD和O的位置关系是相切,理由是:连接OD,AB是O的直径,ADB=90°,DAB+DBA=90°,CDA=CBD,DAB+CDA=90°,OD=OA,DAB=ADO,CDA+ADO=90°,即ODCE,直线CD是O的切线,即直线CD和O的位置关系是相切;(2)AC=2,O的半径是3,OC=2+3=5,OD=3,在RtCDO中,由勾股定理得:CD=4,CE切O于D,EB切O于B,DE=EB,CBE=90°,设DE=EB=x,在RtCBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理22、(1)y1=-20x+1200, 800;(2)15x40.【解析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.【详解】解:(1)设y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,当x=20时,y1=-20×20+1200=800,(2)设y2=kx+b,把(20,0)和(60,1000)代入得则,所以y2=25x-500,当0x20时,y=-20x+1200,当20x60时,y=y1+y2=-20x+1200+25x-500=5x+700,由题意解得该不等式组的解集为15x40所以发生严重干旱时x的范围为15x40.【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.23、(1)四边形ACBD是菱形;理由见解析;(2)证明见解析.【解析】(1)根据题意得出,即可得出结论;(2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.【详解】(1)解:四边形ACBD是菱形;理由如下:根据题意得:AC=BC=BD=AD,四边形ACBD是菱形(四条边相等的四边形是菱形);(2)证明:DEAB,BECD,四边形BEDM是平行四边形,四边形ACBD是菱形,ABCD,BMD=90°,四边形ACBD是矩形,ME=BD,AD=BD,ME=AD【点睛】本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.24、见解析【解析】根据ABD=DCA,ACB=DBC,求证ABC=DCB,然后利用AAS可证明ABCDCB,即可证明结论【详解】证明:ABD=DCA,DBC=ACBABD+DBC=DCA+ACB即ABC=DCB在ABC和DCB中 ABCDCB(ASA)AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证ABCDCB难度不大,属于基础题