2023届泰兴市济川中学十校联考最后数学试题含解析.doc
-
资源ID:87840969
资源大小:677.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届泰兴市济川中学十校联考最后数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积()A65B90C25D852如图,点P(x,y)(x0)是反比例函数y=(k0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若OPA的面积为S,则当x增大时,S的变化情况是()AS的值增大BS的值减小CS的值先增大,后减小DS的值不变3某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )A94分,96分B96分,96分C94分,96.4分D96分,96.4分4下列各数中,最小的数是( )A4 B3 C0 D25如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B C D6实数a,b在数轴上的位置如图所示,以下说法正确的是( )Aa+b=0BbaCab0D|b|a|7若式子在实数范围内有意义,则 x的取值范围是( )Ax1Bx1Cx1Dx18如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(2,2)两点,当y=x的函数值大于的函数值时,x的取值范围是( )Ax2 Bx2C2x0或0x2 D2x0或x29若不等式组无解,那么m的取值范围是()Am2Bm2Cm2Dm210计算x2y(2x+y)的结果为()A3xyB3x3yCx3yDxy二、填空题(共7小题,每小题3分,满分21分)11点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .12的算术平方根为_13若a22a4=0,则5+4a2a2=_14我国经典数学著作九章算术中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,根据题意列方程为 15规定:,如:,若,则_.16已知:如图,AB是O的直径,弦EFAB于点D,如果EF8,AD2,则O半径的长是_17若不等式(a3)x1的解集为,则a的取值范围是_三、解答题(共7小题,满分69分)18(10分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少球两红一红一白两白礼金券(元)182418(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠19(5分)如图,已知在ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的P与边BC的另一个交点为D,联结PD、AD(1)求ABC的面积;(2)设PB=x,APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果APD是直角三角形,求PB的长20(8分)如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.(1)求抛物线的表达式;(2)如图,当CP/AO时,求PAC的正切值;(3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.21(10分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x0)的图象经过线段OC的中点A,交DC于点E,交BC于点F(1)求反比例函数的解析式;(2)求OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b的解集22(10分)计算:22+(2018)02sin60°+|1|23(12分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书)请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量24(14分)如图,在O的内接四边形ABCD中,BCD=120°,CA平分BCD(1)求证:ABD是等边三角形;(2)若BD=3,求O的半径参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可【详解】由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长=13,所以圆锥的表面积=×52+×2×5×13=90故选B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了三视图2、D【解析】作PBOA于B,如图,根据垂径定理得到OB=AB,则SPOB=SPAB,再根据反比例函数k的几何意义得到SPOB=|k|,所以S=2k,为定值【详解】作PBOA于B,如图,则OB=AB,SPOB=SPABSPOB=|k|,S=2k,S的值为定值故选D【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|3、D【解析】解:总人数为6÷10%=60(人),则91分的有60×20%=12(人), 98分的有60-6-12-15-9=18(人), 第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96; 这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60 =(552+1128+1110+1761+900)÷60 =5781÷60 =96.1 故选D【点睛】本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键4、A【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】根据有理数比较大小的方法,可得4203各数中,最小的数是4故选:A【点睛】本题考查了有理数大小比较的方法,解题的关键要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小5、A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.6、D【解析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|a|【详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确. 选D.7、A【解析】直接利用二次根式有意义的条件分析得出答案【详解】式子在实数范围内有意义, x10, 解得:x1故选:A【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键8、D【解析】试题分析:观察函数图象得到当2x0或x2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值故选D考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用9、A【解析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围【详解】由得,xm,由得,x1,又因为不等式组无解,所以m1故选A【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了10、C【解析】原式去括号合并同类项即可得到结果【详解】原式,故选:C【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】画树状图为:共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a,b)在平面直角坐标系中第二象限内的概率=.故答案为.12、【解析】首先根据算术平方根的定义计算先=2,再求2的算术平方根即可【详解】=2,的算术平方根为【点睛】本题考查了算术平方根,属于简单题,熟悉算数平方根的概念是解题关键.13、-3【解析】试题解析: 即 原式 故答案为 14、(x+1);.【解析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用15、1或-1【解析】根据ab=(a+b)b,列出关于x的方程(2+x)x=1,解方程即可【详解】依题意得:(2+x)x=1,整理,得 x2+2x=1,所以 (x+1)2=4,所以x+1=±2,所以x=1或x=-1故答案是:1或-1【点睛】用配方法解一元二次方程的步骤:把原方程化为ax2+bx+c=0(a0)的形式;方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;方程两边同时加上一次项系数一半的平方;把左边配成一个完全平方式,右边化为一个常数;如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解16、1.【解析】试题解析:连接OE,如下图所示,则:OE=OA=R,AB是O的直径,弦EFAB,ED=DF=4,OD=OA-AD,OD=R-2,在RtODE中,由勾股定理可得:OE2=OD2+ED2,R2=(R-2)2+42,R=1考点:1.垂径定理;2.解直角三角形17、【解析】(a3)x>1的解集为x<,不等式两边同时除以(a3)时不等号的方向改变,a3<0,a<3.故答案为a<3.点睛:本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a-3小于0.三、解答题(共7小题,满分69分)18、 (1)见解析 (2)选择摇奖【解析】试题分析:(1)画树状图列出所有等可能结果,再让所求的情况数除以总情况数即为所求的概率;(2)算出相应的平均收益,比较大小即可试题解析:(1)树状图为:一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=;(2)两红的概率P=,两白的概率P=,一红一白的概率P=,摇奖的平均收益是:×18+×24+×18=22,2220,选择摇奖【点睛】主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比19、(1)12(2)y=(0x5)(3)或【解析】试题分析:(1)过点A作AHBC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;(2)先证明BPDBAC,得到=,再根据 ,代入相关的量即可得;(3)分情况进行讨论即可得.试题解析:(1)过点A作AHBC于点H ,则AHB=90°,cosB= ,cosB=,AB=5,BH=4,AH=3,AB=AC,BC=2BH=8,SABC=×8×3=12(2)PB=PD,B=PDB,AB=AC,B=C,C=PDB,BPDBAC, ,即,解得=, , ,解得y=(0x5); (3)APD90°,过C作CEAB交BA延长线于E,可得cosCAE= ,当ADP=90°时,cosAPD=cosCAE=,即 ,解得x=; 当PAD=90°时, ,解得x=,综上所述,PB=或.【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.20、(1)抛物线的表达式为;(2);(3)P点的坐标是.【解析】分析:(1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;(2)如下图,作PHAC于H,连接OP,由已知条件先求得PC=2,AC=,结合SAPC,可求得PH=,再由OA=OC得到CAO=15°,结合CPOA可得PCA=15°,即可得到CH=PH=,由此可得AH=,这样在RtAPH中由tanPAC=即可求得所求答案了;(3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.详解:(1)直线y=x+1经过点A、C,点A在x轴上,点C在y轴上A点坐标是(1,0),点C坐标是(0,1),又抛物线过A,C两点,解得,抛物线的表达式为;(2)作PHAC于H,点C、P在抛物线上,CP/AO, C(0,1),A(-1,0)P(-2,1),AC=,PC=2,PH=,A(1,0),C(0,1),CAO=15°.CP/AO,ACP=CAO=15°,PHAC,CH=PH=,.;(3),抛物线的对称轴为直线,以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,PQAO,且PQ=AO=1 P,Q都在抛物线上,P,Q关于直线对称, P点的横坐标是3, 当x=3时,P点的坐标是.点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出RtAPH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQAO,PQ=AO及P、Q关于抛物线的对称轴对称得到点P的横坐标.【详解】请在此输入详解!21、(1)y=;(2);(3)x1【解析】(1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据OEF的面积=S矩形BCDOSODESOBFSCEF进行计算;(3)观察函数图象得到当x1时,一次函数图象都在反比例函数图象上方,即k2x+b【详解】(1)四边形DOBC是矩形,且点C的坐标为(1,4),OB=1,OD=4,点A为线段OC的中点,A点坐标为(3,2),k1=3×2=1,反比例函数解析式为y=;(2)把x=1代入y=得y=1,则F点的坐标为(1,1);把y=4代入y=得x=,则E点坐标为(,4),OEF的面积=S矩形BCDOSODESOBFSCEF=4×1×4××1×1×(1)×(41)=;(3)由图象得:不等式不等式k2x+b的解集为x1【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可22、4【解析】分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.详解:原式=-4+1-2×+-1=-4点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.23、(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书【解析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可【详解】(1)捐 2 本的人数是 15 人,占 30%,该班学生人数为 15÷30%50 人;(2)根据条形统计图可得:捐 4 本的人数为:50(10+15+7+5)13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为 360°×36°(4)九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50,全校 2000 名学生共捐 2000×6280(本),答:全校 2000 名学生共捐 6280 册书【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数24、(1)详见解析;(2).【解析】(1)因为AC平分BCD,BCD120°,根据角平分线的定义得:ACDACB60°,根据同弧所对的圆周角相等,得ACDABD,ACBADB,ABDADB60°.根据三个角是60°的三角形是等边三角形得ABD是等边三角形.(2)作直径DE,连结BE,由于ABD是等边三角形,则BAD60°,由同弧所对的圆周角相等,得BEDBAD60°.根据直径所对的圆周角是直角得,EBD90°,则EDB30°,进而得到DE2BE.设EBx,则ED2x,根据勾股定理列方程求解即可.【详解】解:(1)BCD=120°,CA平分BCD,ACD=ACB=60°,由圆周角定理得,ADB=ACB=60°,ABD=ACD=60°,ABD是等边三角形;(2)连接OB、OD,作OHBD于H,则DH=BD=,BOD=2BAD=120°,DOH=60°,在RtODH中,OD=,O的半径为【点睛】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.