2023届福建厦门第一中学中考试题猜想数学试卷含解析.doc
-
资源ID:87841095
资源大小:962KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届福建厦门第一中学中考试题猜想数学试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1对于反比例函数y=,下列说法不正确的是()A图象分布在第二、四象限B当x0时,y随x的增大而增大C图象经过点(1,2)D若点A(x1,y1),B(x2,y2)都在图象上,且x1x2,则y1y22如图,在中,则等于( )ABCD3某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A18分,17分 B20分,17分 C20分,19分 D20分,20分4已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是()ABCD5孙子算经是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )ABCD6在一张考卷上,小华写下如下结论,记正确的个数是m,错误的个数是n,你认为有公共顶点且相等的两个角是对顶角 若,则它们互余A4BCD7如图,在等腰直角三角形ABC中,C=90°,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是( )ABCD8如图,BD是ABC的角平分线,DCAB,下列说法正确的是()ABC=CDBADBCCAD=BCD点A与点C关于BD对称9已知,且,则的值为( )A2或12B2或C或12D或10已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A1B2C3D4二、填空题(共7小题,每小题3分,满分21分)11如图EDB由ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_12分式有意义时,x的取值范围是_13在RtABC中,C90°,AB6,cosB,则BC的长为_14在平面直角坐标系中,已知,A(2,0),C(0,1),若P为线段OA上一动点,则CP+AP的最小值为_15若正n边形的内角为,则边数n为_.16M的圆心在一次函数y=x+2图象上,半径为1当M与y轴相切时,点M的坐标为_17如果关于x的方程的两个实数根分别为x1,x2,那么的值为_三、解答题(共7小题,满分69分)18(10分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)(1)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;(2)把A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长19(5分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线(1)求该一次函数表达式;(2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围20(8分)解不等式组:,并把解集在数轴上表示出来。21(10分)如图,在ABCD中,过点A作AEBC于点E,AFDC于点F,AE=AF(1)求证:四边形ABCD是菱形;(2)若EAF=60°,CF=2,求AF的长22(10分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);(4)数据显示,2018年13月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率23(12分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”比赛项目为:A唐诗;B宋词;C论语;D三字经比赛形式分“单人组”和“双人组”(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明24(14分)图 1 和图 2 中,优弧纸片所在O 的半径为 2,AB2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A发现:(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,ABA ;(2)当 BA与O 相切时,如图 2,求折痕的长拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A, O,设MNP(1)当15°时,过点 A作 ACMN,如图 3,判断 AC 与半圆 O 的位置关系,并说明理由;(2)如图 4,当 °时,NA与半圆 O 相切,当 °时,点 O落在上 (3)当线段 NO与半圆 O 只有一个公共点 N 时,直接写出的取值范围参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解【详解】A. k=2<0,它的图象在第二、四象限,故本选项正确;B. k=2<0,当x>0时,y随x的增大而增大,故本选项正确;C.,点(1,2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0< x2,则y2<y1,故本选项错误.故选:D.【点睛】考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.2、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得详解:在RtABC中,AB=10、AC=8,BC=,sinA=.故选:A点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义3、D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D点睛:本题考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数4、D【解析】首先利用已知条件根据边角边可以证明APDAEB;由可得BEP=90°,故BE不垂直于AE过点B作BFAE延长线于F,由得AEB=135°所以EFB=45°,所以EFB是等腰Rt,故B到直线AE距离为BF=,故是错误的;利用全等三角形的性质和对顶角相等即可判定说法正确;由APDAEB,可知SAPD+SAPB=SAEB+SAPB,然后利用已知条件计算即可判定;连接BD,根据三角形的面积公式得到SBPD=PD×BE=,所以SABD=SAPD+SAPB+SBPD=2+,由此即可判定【详解】由边角边定理易知APDAEB,故正确;由APDAEB得,AEP=APE=45°,从而APD=AEB=135°,所以BEP=90°,过B作BFAE,交AE的延长线于F,则BF的长是点B到直线AE的距离,在AEP中,由勾股定理得PE=,在BEP中,PB= ,PE=,由勾股定理得:BE=,PAE=PEB=EFB=90°,AE=AP,AEP=45°,BEF=180°-45°-90°=45°,EBF=45°,EF=BF,在EFB中,由勾股定理得:EF=BF=,故是错误的;因为APDAEB,所以ADP=ABE,而对顶角相等,所以是正确的; 由APDAEB,PD=BE=,可知SAPD+SAPB=SAEB+SAPB=SAEP+SBEP=+,因此是错误的;连接BD,则SBPD=PD×BE= ,所以SABD=SAPD+SAPB+SBPD=2+,所以S正方形ABCD=2SABD=4+ 综上可知,正确的有故选D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题5、A【解析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决【详解】由题意可得,故选A【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组6、D【解析】首先判断出四个结论的错误个数和正确个数,进而可得m、n的值,再计算出即可【详解】解:有公共顶点且相等的两个角是对顶角,错误;,正确;,错误;若,则它们互余,错误;则,故选D【点睛】此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m、n的值7、A【解析】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45°,由三角形外角性质得CDF+45°=BED+45°,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得x=,sinBED=sinCDF=故选:A8、A【解析】由BD是ABC的角平分线,根据角平分线定义得到一对角ABD与CBD相等,然后由DCAB,根据两直线平行,得到一对内错角ABD与CDB相等,利用等量代换得到DBC=CDB,再根据等角对等边得到BC=CD,从而得到正确的选项【详解】BD是ABC的角平分线,ABD=CBD,又DCAB,ABD=CDB,CBD=CDB,BC=CD故选A【点睛】此题考查了等腰三角形的判定,以及平行线的性质学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题这是一道较易的证明题,锻炼了学生的逻辑思维能力9、D【解析】根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.故选D.10、B【解析】先由平均数是3可得x的值,再结合方差公式计算【详解】数据1、2、3、x、5的平均数是3,=3,解得:x=4,则数据为1、2、3、4、5,方差为×(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2,故选B【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义二、填空题(共7小题,每小题3分,满分21分)11、【解析】先利用旋转的性质得到BCBD,CEDB,AE,CBDABE,再利用等腰三角形的性质和三角形内角和定理证明ABDA,则BDAD,然后证明BDCABC,则利用相似比得到BC:ABCD:BC,即BF:(AFBF)AF:BF,最后利用解方程求出AF与BF的比值.【详解】如图EDB由ABC绕点B逆时针旋转而来,D点落在AC上,BCBD,CEDB,AE,CBDABE,ABEADF,CBDADF,DBBF,BFBDBC,而CEDB,CBDABD,ABCC2ABD,BDCAABD,ABDA,BDAD,CDAF,ABAC,ABCCBDC,BDCABC,BC:ABCD:BC,即BF:(AFBF)AF:BF,整理得AF2BFAFBF20,AFBF,即AF与BF的比值为.故答案是.【点睛】本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.12、x1【解析】要使代数式有意义时,必有1x2,可解得x的范围【详解】根据题意得:1x2,解得:x1故答案为x1【点睛】考查了分式和二次根式有意义的条件二次根式有意义,被开方数为非负数,分式有意义,分母不为213、4【解析】根据锐角的余弦值等于邻边比对边列式求解即可.【详解】C=90°,AB=6,BC=4.【点睛】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在RtABC中, , ,.14、【解析】可以取一点D(0,1),连接AD,作CNAD于点N,PMAD于点M,根据勾股定理可得AD3,证明APMADO得,PMAP当CPAD时,CP+APCP+PM的值最小,最小值为CN的长【详解】如图,取一点D(0,1),连接AD,作CNAD于点N,PMAD于点M,在RtAOD中,OA2,OD1,AD3,PAMDAO,AMPAOD90°,APMADO,即,PMAP,PC+APPC+PM,当CPAD时,CP+APCP+PM的值最小,最小值为CN的长CNDAOD,即CN 所以CP+AP的最小值为故答案为:【点睛】此题考查勾股定理,三角形相似的判定及性质,最短路径问题,如何找到AP的等量线段与线段CP相加是解题的关键,由此利用勾股定理、相似三角形做辅助线得到垂线段PM,使问题得解.15、9【解析】分析:根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.详解:由题意可得:140n=180(n-2),解得:n=9.故答案为:9.点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).16、(1,)或(1,)【解析】设当M与y轴相切时圆心M的坐标为(x,x+2),再根据M的半径为1即可得出y的值【详解】解:M的圆心在一次函数y=x+2的图象上运动,设当M与y轴相切时圆心M的坐标为(x, x+2),M的半径为1,x=1或x=1,当x=1时,y=,当x=1时,y=.P点坐标为:(1, )或(1, ).故答案为(1, )或(1, ).【点睛】本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.17、【解析】由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负数的性质得到k的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值【详解】方程x2+kx+0有两个实数根,b2-4ac=k2-4(k2-3k+)=-2k2+12k-18=-2(k-3)20,k=3,代入方程得:x2+3x+=(x+)2=0,解得:x1=x2=-,则=-故答案为-【点睛】此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点三、解答题(共7小题,满分69分)18、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算19、(1);(2)【解析】(1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;(2)根据直线上的点Q(x,y)在直线的下方可得2x1<3x+2,解不等式即得结果.【详解】解:(1)一次函数平行于直线,可设该一次函数的解析式为:,直线过点M(4,7),8+b=7,解得b=1,一次函数的解析式为:y=2x1;(2)点Q(x,y)是该一次函数图象上的点,y=2x1,又点Q在直线的下方,如图,2x1<3x+2,解得x>3.【点睛】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.20、,解集在数轴上表示见解析【解析】试题分析:先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可试题解析:由得:由得:不等式组的解集为:解集在数轴上表示为:21、 (1)见解析;(2)2【解析】(1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可; 方法二: 只要证明AEBAFD. 可得AB=AD即可解决问题;(2) 在RtACF, 根据AF=CF·tanACF计算即可.【详解】(1)证法一:连接AC,如图AEBC,AFDC,AE=AF,ACF=ACE,四边形ABCD是平行四边形,ADBCDAC=ACBDAC=DCA,DA=DC,四边形ABCD是菱形证法二:如图,四边形ABCD是平行四边形,B=DAEBC,AFDC,AEB=AFD=90°,又AE=AF,AEBAFDAB=AD,四边形ABCD是菱形(2)连接AC,如图AEBC,AFDC,EAF=60°,ECF=120°,四边形ABCD是菱形,ACF=60°,在RtCFA中,AF=CFtanACF=2【点睛】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。22、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;(4).【解析】(1)认真读题,找到题目中的相关信息量,列表统计即可;(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;(3)根据图表信息写出一个符合条件的信息即可;(4)利用树状图确定求解概率.【详解】(1)统计表如下: 2017年新能源汽车各类型车型销量情况(单位:万辆)类型纯电动混合动力总计新能源乘用车46.811.157.9新能源商用车18.41.419.8(2)混动乘用:×100%14.3%,14.3%×360°51.5°,纯电动商用:×100%23.7%,23.7%×360°85.3°,补全图形如下:(3)总销量越高,其个人购买量越大(4)画树状图如下:一共有12种等可能的情况数,其中抽中1、4的情况有2种,小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=【点睛】此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.23、 (1) ;(2).【解析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=24、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°30°或 45°90°【解析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出ABA(2)根据切线的性质得到OBA=90°,从而得到ABA=120°,就可求出ABP,进而求出OBP=30°过点O作OGBP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长拓展:(1)过A'、O作A'HMN于点H,ODA'C于点D用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定AC与半圆相切;(2)当NA与半圆相切时,可知ONAN,则可知=45°,当O在时,连接MO,则可知NO=MN,可求得MNO=60°,可求得=30°;(3)根据点A的位置不同得到线段NO与半圆O只有一个公共点N时的取值范围是0°30°或45°90°【详解】发现:(1)过点O作OHAB,垂足为H,如图1所示,O的半径为2,AB=2,OH=在BOH中,OH=1,BO=2ABO=30°图形沿BP折叠,得到点A的对称点AOBA=ABO=30°ABA=60°(2)过点O作OGBP,垂足为G,如图2所示BA与O相切,OBABOBA=90°OBH=30°,ABA=120°ABP=ABP=60°OBP=30°OG=OB=1BG=OGBP,BG=PG=BP=2折痕的长为2拓展:(1)相切分别过A'、O作A'HMN于点H,ODA'C于点D如图3所示,A'CMN四边形A'HOD是矩形A'H=O=15°A'NH=30OD=A'H=A'N=MN=2A'C与半圆(2)当NA与半圆O相切时,则ONNA,ONA=2=90°,=45当O在上时,连接MO,则可知NO=MN,OMN=0°MNO=60°,=30°,故答案为:45°;30°(3)点P,M不重合,0,由(2)可知当增大到30°时,点O在半圆上,当0°30°时点O在半圆内,线段NO与半圆只有一个公共点B;当增大到45°时NA与半圆相切,即线段NO与半圆只有一个公共点B当继续增大时,点P逐渐靠近点N,但是点P,N不重合,90°,当45°90°线段BO与半圆只有一个公共点B综上所述0°30°或45°90°【点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键