2023届浙江省金华市婺城区中考数学最后一模试卷含解析.doc
-
资源ID:87841117
资源大小:541KB
全文页数:15页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届浙江省金华市婺城区中考数学最后一模试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,I是ABC的内心,AI向延长线和ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )A线段DB绕点D顺时针旋转一定能与线段DC重合B线段DB绕点D顺时针旋转一定能与线段DI熏合CCAD绕点A顺时针旋转一定能与DAB重合D线段ID绕点I顺时针旋转一定能与线段IB重合2已知二次函数y=3(x1)2+k的图象上有三点A(,y1),B(2,y2),C(,y3),则y1、y2、y3的大小关系为()Ay1y2y3By2y1y3Cy3y1y2Dy3y2y13如图所示的几何体的俯视图是( )ABCD4某射手在同一条件下进行射击,结果如下表所示:射击次数(n)102050100200500击中靶心次数(m)8194492178451击中靶心频率()0.800.950.880.920.890.90由此表推断这个射手射击1次,击中靶心的概率是( )A0.6B0.7C0.8D0.95如图,点P是AOB外的一点,点M,N分别是AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM2.5cm,PN3cm,MN4cm,则线段QR的长为( )A4.5cmB5.5cmC6.5cmD7cm6下列命题是真命题的是( )A如实数a,b满足a2b2,则abB若实数a,b满足a0,b0,则ab0C“购买1张彩票就中奖”是不可能事件D三角形的三个内角中最多有一个钝角7实数a、b、c在数轴上的位置如图所示,则代数式|ca|a+b|的值等于()Ac+bBbcCc2a+bDc2ab8如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()ABCD9如图,在ABC中,AB=AC=3,BC=4,AE平分BAC交BC于点E,点D为AB的中点,连接DE,则BDE的周长是()A3B4C5D610已知BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的O与射线AC有公共点,那么x的取值范围是( )A0x1B1xC0xDx二、填空题(共7小题,每小题3分,满分21分)11若关于x的方程x28x+m0有两个相等的实数根,则m_12如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_海里.(结果保留根号)13如图,AB是圆O的直径,AC是圆O的弦,AB=2,BAC=30°在图中画出弦AD,使AD=1,则CAD的度数为_°14如图,在平面直角坐标系中,已知A(2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA,则A的坐标为_15分解因式_16如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,则折痕EF的长为_17某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分 那么,其中最喜欢足球的学生数占被调查总人数的百分比为_%三、解答题(共7小题,满分69分)18(10分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由19(5分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PCAB,点M是OP中点(1)求证:四边形OBCP是平行四边形;(2)填空:当BOP 时,四边形AOCP是菱形;连接BP,当ABP 时,PC是O的切线20(8分)如图,在四边形ABCD中,ADBC,BABC,BD平分ABC求证:四边形ABCD是菱形;过点D作DEBD,交BC的延长线于点E,若BC5,BD8,求四边形ABED的周长21(10分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案22(10分)如图,BCD90°,且BCDC,直线PQ经过点D设PDC(45°135°),BAPQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E当125°时,ABC °;求证:ACCE;若ABC的外心在其内部,直接写出的取值范围23(12分) 先化简,再求值: ,其中x是满足不等式(x1)的非负整数解24(14分)计算:2sin30°|1|+()1参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】解:I是ABC的内心,AI平分BAC,BI平分ABC,BAD=CAD,ABI=CBI,故C正确,不符合题意;=,BD=CD,故A正确,不符合题意;DAC=DBC,BAD=DBCIBD=IBC+DBC,BID=ABI+BAD,DBI=DIB,BD=DI,故B正确,不符合题意故选D点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等2、D【解析】试题分析:根据二次函数的解析式y3(x1)2k,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y3y2y1.故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证.3、D【解析】试题分析:根据俯视图的作法即可得出结论从上往下看该几何体的俯视图是D故选D考点:简单几何体的三视图.4、D【解析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解【详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.5、A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=25cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-25=25(cm),即可得出QR的长RN+NQ=3+25=35(cm)故选A考点:轴对称图形的性质6、D【解析】A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断B. 同号相乘为正,异号相乘为负,即可判断C. “购买1张彩票就中奖”是随机事件即可判断D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a,b满足a2b2,则a±b,A是假命题;数a,b满足a0,b0,则ab0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键7、A【解析】根据数轴得到ba0c,根据有理数的加法法则,减法法则得到c-a0,a+b0,根据绝对值的性质化简计算【详解】由数轴可知,ba0c,c-a0,a+b0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键8、B【解析】解:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,使图中黑色部分的图形仍然构成一个轴对称图形的概率是:故选B9、C【解析】根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案【详解】解:在ABC中,AB=AC=3,AE平分BAC,BE=CE=BC=2,又D是AB中点,BD=AB=,DE是ABC的中位线,DE=AC=,BDE的周长为BD+DE+BE=+2=5,故选C【点睛】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键10、C【解析】如下图,设O与射线AC相切于点D,连接OD,ADO=90°,BAC=45°,ADO是等腰直角三角形,AD=DO=1,OA=,此时O与射线AC有唯一公共点点D,若O再向右移动,则O与射线AC就没有公共点了,x的取值范围是.故选C.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据判别式的意义得到(8)24m0,然后解关于m的方程即可【详解】(8)24m0,解得m1,故答案为:1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c0(a0)的根与b24ac有如下关系:当0时,方程有两个不相等的实数根;当0时,方程有两个相等的实数根;当0时,方程无实数根12、5 【解析】如图,作BHAC于H在RtABH中,求出BH,再在RtBCH中,利用等腰直角三角形的性质求出BC即可【详解】如图,作BHAC于H在RtABH中,AB=10海里,BAH=30°,ABH=60°,BH=AB=5(海里),在RtBCH中,CBH=C=45°,BH=5(海里),BH=CH=5海里,CB=5(海里)故答案为:5【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题13、30或1【解析】根据题意作图,由AB是圆O的直径,可得ADB=ADB=1°,继而可求得DAB的度数,则可求得答案【详解】解:如图,AB是圆O的直径,ADB=ADB=1°,AD=AD=1,AB=2,cosDAB=cosDAB=,DAB=DAB=60°,CAB=30°,CAD=30°,CAD=1°CAD的度数为:30°或1°故答案为30或1【点睛】本题考查圆周角定理;含30度角的直角三角形14、 (2,3)【解析】作ACx轴于C,作ACx轴,垂足分别为C、C,证明ABCBAC,可得OC=OB+BC=1+1=2,AC=BC=3,可得结果【详解】如图,作ACx轴于C,作ACx轴,垂足分别为C、C,点A、B的坐标分别为(-2,1)、(1,0),AC=2,BC=2+1=3,ABA=90°,ABC+ABC=90°,BAC+ABC=90°,BAC=ABC,BA=BA,ACB=BCA,ABCBAC,OC=OB+BC=1+1=2,AC=BC=3,点A的坐标为(2,3)故答案为(2,3)【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定解决问题的关键是作辅助线构造全等三角形15、(x+y+z)(xyz)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解本题后三项可以为一组组成完全平方式,再用平方差公式即可【详解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z)故答案为(x+y+z)(x-y-z)【点睛】本题考查了用分组分解法进行因式分解难点是采用两两分组还是三一分组本题后三项可组成完全平方公式,可把后三项分为一组16、【解析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,四边形ABCD是矩形,设,则,在中,即,由折叠的性质可得:,故答案为【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用17、1%【解析】依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比【详解】被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%,故答案为:1【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系三、解答题(共7小题,满分69分)18、(1);(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:P(小王)=,P(小李)=,规则不公平点睛:本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比19、 (1)见解析;(2)120°;45°【解析】(1)由AAS证明CPMAOM,得出PC=OA,得出PC=OB,即可得出结论;(2)证出OA=OP=PA,得出AOP是等边三角形,A=AOP=60°,得出BOP=120°即可;由切线的性质和平行线的性质得出BOP=90°,由等腰三角形的性质得出ABP=OPB=45°即可【详解】(1)PCAB,PCMOAM,CPMAOM点M是OP的中点,OMPM,在CPM和AOM中,CPMAOM(AAS),PCOAAB是半圆O的直径,OAOB,PCOB又PCAB,四边形OBCP是平行四边形(2)四边形AOCP是菱形,OAPA,OAOP,OAOPPA,AOP是等边三角形,AAOP60°,BOP120°;故答案为120°;PC是O的切线,OPPC,OPC90°,PCAB,BOP90°,OPOB,OBP是等腰直角三角形,ABPOPB45°,故答案为45°【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键20、(1)详见解析;(2)1.【解析】(1)根据平行线的性质得到ADBCBD,根据角平分线定义得到ABDCBD,等量代换得到ADBABD,根据等腰三角形的判定定理得到ADAB,根据菱形的判定即可得到结论;(2)由垂直的定义得到BDE90°,等量代换得到CDEE,根据等腰三角形的判定得到CDCEBC,根据勾股定理得到DE6,于是得到结论【详解】(1)证明:ADBC,ADBCBD,BD平分ABC,ABDCBD,ADBABD,ADAB,BABC,ADBC,四边形ABCD是平行四边形,BABC,四边形ABCD是菱形;(2)解:DEBD,BDE90°,DBC+EBDC+CDE90°,CBCD,DBCBDC,CDEE,CDCEBC,BE2BC10,BD8,DE6,四边形ABCD是菱形,ADABBC5,四边形ABED的周长AD+AB+BE+DE1【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键21、(1)y=8x+2560(30x1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口【解析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1x)吨,从乙仓库运往A港口的有吨,运往B港口的有50(1x)=(x30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x0,8-x0,x-300,100-x0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y最小,并求出最小值,写出运输方案试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1x)吨,从乙仓库运往A港口的有吨,运往B港口的有50(1x)=(x30)吨,所以y=14x+20+10(1x)+8(x30)=8x+2560,x的取值范围是30x1(2)由(1)得y=8x+2560y随x增大而减少,所以当x=1时总运费最小,当x=1时,y=8×1+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口考点:一次函数的应用22、(1)125;(2)详见解析;(3)45°90°【解析】(1)利用四边形内角和等于360度得:B+ADC180°,而ADC+EDC180°,即可求解;(2)证明ABCEDC(AAS)即可求解;(3)当ABC90°时,ABC的外心在其直角边上,ABC90°时,ABC的外心在其外部,即可求解【详解】(1)在四边形BADC中,B+ADC360°BADDCB180°,而ADC+EDC180°,ABCPDC125°,故答案为125;(2)ECD+DCA90°,DCA+ACB90°,ACBECD,又BCDC,由(1)知:ABCPDC,ABCEDC(AAS),ACCE;(3)当ABC90°时,ABC的外心在其斜边上;ABC90°时,ABC的外心在其外部,而45°135°,故:45°90°【点睛】本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心23、- 【解析】【分析】先根据分式的运算法则进行化简,然后再求出不等式的非负整数解,最后把符合条件的x的值代入化简后的结果进行计算即可.【详解】原式=,=,=,(x1),x11,x0,非负整数解为0,x=0,当x=0时,原式=-.【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则.24、4【解析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可【详解】原式=2×( 1)+2=1+1+2=4【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键