2023届重庆市两江新区重点中学中考数学考试模拟冲刺卷含解析.doc
-
资源ID:87841124
资源大小:932KB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届重庆市两江新区重点中学中考数学考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1根据文化和旅游部发布的“五一”假日旅游指南,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元将880亿用科学记数法表示应为()A8×107B880×108C8.8×109D8.8×10102解分式方程3=时,去分母可得()A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=43小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A30和 20 B30和25 C30和22.5 D30和17.54下列运算正确的是()ABCa2a3=a5D(2a)3=2a35圆锥的底面直径是80cm,母线长90cm,则它的侧面积是ABCD6一个多边形的每个内角均为120°,则这个多边形是( )A四边形B五边形C六边形D七边形7如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()ABCD8商场将某种商品按原价的8折出售,仍可获利20元已知这种商品的进价为140元,那么这种商品的原价是()A160元 B180元 C200元 D220元9下列大学的校徽图案是轴对称图形的是( )ABCD10将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()ABCD11如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )ABCD12将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= 14小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_千米15已知O1、O2的半径分别为2和5,圆心距为d,若O1与O2相交,那么d的取值范围是_16如图,在中,AB为直径,点C在上,的平分线交于D,则_17某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_元.18已知线段a4,线段b9,则a,b的比例中项是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜这个游戏对双方公平吗?请列表格或画树状图说明理由20(6分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”. (1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ; (2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格21(6分)用你发现的规律解答下列问题计算 探究 (用含有的式子表示)若的值为,求的值22(8分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B求抛物线的解析式;判断ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若SOPA=2SOQA,试求出点P的坐标23(8分)如图,已知点A,C在EF上,ADBC,DEBF,AECF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AECF除外)24(10分)关于x的一元二次方程ax2+bx+1=1(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根25(10分)如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,C=90°,EG=4cm,EGF=90°,O是EFG斜边上的中点如图,若整个EFG从图的位置出发,以1cm/s的速度沿射线AB方向平移,在EFG平移的同时,点P从EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)26(12分)问题提出(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, BAD=BCD=90°,ADC=60°,则四边形 ABCD 的面积为 ;问题探究(2).如图 2,在四边形 ABCD 中,BAD=BCD=90°,ABC=135°,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得BEF 的周长最小,作出图像即可. 27(12分)如图1,ABC与CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN(1)观察猜想:图1中,PM与PN的数量关系是 ,位置关系是 (2)探究证明:将图1中的CDE绕着点C顺时针旋转(0°90°),得到图2,AE与MP、BD分别交于点G、H,判断PMN的形状,并说明理由;(3)拓展延伸:把CDE绕点C任意旋转,若AC=4,CD=2,请直接写出PMN面积的最大值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】880亿=880 0000 0000=8.8×1010,故选D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断【详解】方程两边同时乘以(x-2),得13(x2)=4,故选B【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.3、C【解析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,故选:C【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错4、C【解析】根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断【详解】解:A、=2,此选项错误;B、不能进一步计算,此选项错误;C、a2a3=a5,此选项正确;D、(2a)3=8a3,此选项计算错误;故选:C【点睛】本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则5、D【解析】圆锥的侧面积=×80×90=3600(cm2) .故选D6、C【解析】由题意得,180°(n-2)=120°,解得n=6.故选C.7、D【解析】两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可【详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)=.故答案选:D.【点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.8、C【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可【详解】解:设原价为x元,根据题意可得:80%x=140+20,解得:x=1所以该商品的原价为1元;故选:C【点睛】此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键9、B【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合10、C【解析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直故选C【点睛】本题主要考查学生的动手能力及空间想象能力对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现11、A【解析】试题解析:一个斜坡长130m,坡顶离水平地面的距离为50m,这个斜坡的水平距离为:=10m,这个斜坡的坡度为:50:10=5:1故选A点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式12、D【解析】将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.【详解】由题意得,a=-.设旋转180°以后的顶点为(x,y),则x=2×0-(-2)=2,y=2×3-5=1,旋转180°以后的顶点为(2,1),旋转180°以后所得图象的解析式为:.故选D.【点睛】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】先根据反比例函数比例系数k的几何意义得到,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值【详解】解:根据题意可知,轴,设图中阴影部分的面积从左向右依次为,则,解得:k=2故答案为1考点:反比例函数综合题14、1【解析】根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答.【详解】设小明的速度为akm/h,小亮的速度为bkm/h, ,解得, ,当小明到达B地时,小亮距离A地的距离是:120×(3.51)60×3.51(千米),故答案为1【点睛】此题考查一次函数的应用,解题关键在于列出方程组.15、3<d<7【解析】若两圆的半径分别为R和r,且Rr,圆心距为d:相交,则R-r<d<R+r,从而得到圆心距O1O2的取值范围【详解】O1和O2的半径分别为2和5,且两圆的位置关系为相交,圆心距O1O2的取值范围为5-2<d<2+5,即3<d<7.故答案为:3<d<7.【点睛】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.16、1【解析】由AB为直径,得到,由因为CD平分,所以,这样就可求出【详解】解:为直径,又平分,故答案为1【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半同时考查了直径所对的圆周角为90度17、28【解析】设这种电子产品的标价为x元,由题意得:0.9x21=21×20%,解得:x=28,所以这种电子产品的标价为28元故答案为28.18、6【解析】根据已知线段a4,b9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案【详解】解:a4,b9,设线段x是a,b的比例中项, ,x2ab4×936,x6,x6(舍去)故答案为6【点睛】本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.【详解】根据题意列表如下: 12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,P(甲获胜)=,P(乙获胜)=1=,则该游戏不公平【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比20、(1);(2) 【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率试题解析:(1)对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=考点:列表法与树状图法;概率公式21、解:(1);(2);(3)n=17.【解析】(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.【详解】(1)原式=1+=1=.故答案为; (2)原式=1+=1=故答案为; (3) += (1+)=(1)=解得:n=17.考点:规律题.22、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【解析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案【详解】解:(1)由题意得:,解得:,抛物线的解析式为y=-x2+2x+2;(2)由y=-x2+2x+2得:当x=0时,y=2,B(0,2),由y=-(x-1)2+3得:C(1,3),A(3,-1),AB=3,BC=,AC=2,AB2+BC2=AC2,ABC=90°,ABC是直角三角形;(3)如图,当点Q在线段AP上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=AQPEAD,PQEAQD,=1,PE=AD=1由-x2+2x+2=1得:x=1,P(1+,1)或(1-,1),如图,当点Q在PA延长线上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=3AQPEAD,PQEAQD,=3,PE=3AD=3由-x2+2x+2=-3得:x=1±,P(1+,-3),或(1-,-3),综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键23、(1)见解析;(2)ADBC,ECAF,EDBF,ABDC.【解析】整体分析:(1)用ASA证明ADECBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据ADECBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.解:(1)证明:ADBC,DEBF,EF,DACBCA,DAEBCF.在ADE和CBF中,ADECBF,ADBC,四边形ABCD是平行四边形(2)ADBC,ECAF,EDBF,ABDC.理由如下:ADECBF,ADBC,EDBF.AECF,ECAF.四边形ABCD是平行四边形,ABDC.24、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=2【解析】分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(2)解:由题意:,原方程有两个不相等的实数根(2)答案不唯一,满足()即可,例如:解:令,则原方程为,解得:点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.25、(1)1.5s;(2)S=x2+x+3(0x3);(3)当x=(s)时,四边形OAHP面积与ABC面积的比为13:1【解析】(1)由于O是EF中点,因此当P为FG中点时,OPEGAC,据此可求出x的值(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积三角形AHF中,AH的长可用AF的长和FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长)三角形OFP中,可过O作ODFP于D,PF的长易知,而OD的长,可根据OF的长和FOD的余弦值得出由此可求得y、x的函数关系式(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值【详解】解:(1)RtEFGRtABC,即,FG=3cm当P为FG的中点时,OPEG,EGACOPACx=×3=1.5(s)当x为1.5s时,OPAC(2)在RtEFG中,由勾股定理得EF=5cmEGAHEFGAFH,AH=(x+5),FH=(x+5)过点O作ODFP,垂足为D点O为EF中点OD=EG=2cmFP=3xS四边形OAHP=SAFHSOFP=AHFHODFP=(x+5)(x+5)×2×(3x)=x2+x+3(0x3)(3)假设存在某一时刻x,使得四边形OAHP面积与ABC面积的比为13:1则S四边形OAHP=×SABCx2+x+3=××6×86x2+85x250=0解得x1=,x2=(舍去)0x3当x=(s)时,四边形OAHP面积与ABC面积的比为13:1【点睛】本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决26、(1)3 ,(2)见解析【解析】(1)易证ABDCBD,再利用含30°的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,AEF即为所求.【详解】(1)AB=BC,AD=CD=3, BAD=BCD=90°,ABDCBD(HL)ADB=CDB=ADC=30°,AB=SABD=四边形ABCD的面积为2SABD=(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,BEF的周长为BE+EF+BF=BE+EF+BF=BB为最短.故此时BEF的周长最小.【点睛】此题主要考查含30°的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.27、(1)PM=PN,PMPN(2)等腰直角三角形,理由见解析(3) 【解析】(1)由等腰直角三角形的性质易证ACEBCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PMPN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;【详解】解:(1)PM=PN,PMPN,理由如下:延长AE交BD于O,ACB和ECD是等腰直角三角形,AC=BC,EC=CD,ACB=ECD=90°在ACE和BCD中,ACEBCD(SAS),AE=BD,EAC=CBD,EAC+AEC=90°,AEC=BEO,CBD+BEO=90°,BOE=90°,即AEBD,点M、N分别是斜边AB、DE的中点,点P为AD的中点,PM=BD,PN=AE,PM=PM,PMBD,PNAE,AEBD,NPD=EAC,MPA=BDC,EAC+BDC=90°,MPA+NPC=90°,MPN=90°,即PMPN,故答案是:PM=PN,PMPN;(2)如图中,设AE交BC于O,ACB和ECD是等腰直角三角形,AC=BC,EC=CD,ACB=ECD=90°,ACB+BCE=ECD+BCE,ACE=BCD,ACEBCD,AE=BD,CAE=CBD,又AOC=BOE,CAE=CBD,BHO=ACO=90°,点P、M、N分别为AD、AB、DE的中点,PM=BD,PMBD,PN=AE,PNAE,PM=PN,MGE+BHA=180°,MGE=90°,MPN=90°,PMPN;(3)由(2)可知PMN是等腰直角三角形,PM=BD,当BD的值最大时,PM的值最大,PMN的面积最大,当B、C、D共线时,BD的最大值=BC+CD=6,PM=PN=3,PMN的面积的最大值=×3×3=【点睛】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题