2023届陕西省西安临潼区骊山初级中学毕业升学考试模拟卷数学卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数y=-x2-4x+5的最大值是( )A-7B5C0D92如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )ABCD3在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )ABCD4下列调查中,调查方式选择合理的是()A为了解襄阳市初中每天锻炼所用时间,选择全面调查B为了解襄阳市电视台襄阳新闻栏目的收视率,选择全面调查C为了解神舟飞船设备零件的质量情况,选择抽样调查D为了解一批节能灯的使用寿命,选择抽样调查5如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )Aab>0Bab >0CD6下列计算中,正确的是()Aa3a=4a2B2a+3a=5a2C(ab)3=a3b3D7a3÷14a2=2a7下列计算结果为a6的是()Aa2a3 Ba12÷a2 C(a2)3 D(a2)38下列运算中,正确的是 ( )Ax2+5x2=6x4Bx3CD9如图,函数ykxb(k0)与y (m0)的图象交于点A(2,3),B(6,1),则不等式kxb的解集为()ABCD10小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1若小昱在某页写的数为101,则阿帆在该页写的数为何?()A350B351C356D35811根据文化和旅游部发布的“五一”假日旅游指南,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元将880亿用科学记数法表示应为()A8×107B880×108C8.8×109D8.8×101012已知二次函数yax1+bx+c+1的图象如图所示,顶点为(1,0),下列结论:abc0;b14ac0;a1;ax1+bx+c1的根为x1x11;若点B(,y1)、C(,y1)为函数图象上的两点,则y1y1其中正确的个数是()A1B3C4D5二、填空题:(本大题共6个小题,每小题4分,共24分)13不等式组的最大整数解是_.14二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3An在y轴的正半轴上,点B1,B2,B3Bn在二次函数位于第一象限的图象上,点C1,C2,C3Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3四边形An1BnAnCn都是菱形,A0B1A1=A1B2A1=A2B3A3=An1BnAn=60°,菱形An1BnAnCn的周长为 15将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则1的度数为_度16已知数据x1,x2,xn的平均数是,则一组新数据x1+8,x2+8,xn+8的平均数是_.17若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 18哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在2018年韶关市开展的“善美韶关情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?20(6分)已知2是关于x的方程x22mx+3m0的一个根,且这个方程的两个根恰好是等腰ABC的两条边长,则ABC的周长为_21(6分)如图,矩形中,点是线段上一动点, 为的中点, 的延长线交BC于.(1)求证: ;(2)若,从点出发,以l的速度向运动(不与重合).设点运动时间为,请用表示的长;并求为何值时,四边形是菱形.22(8分)如图1,抛物线y1=ax1x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GMx轴于点M将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与AMG全等,求直线PR的解析式23(8分)已知:如图,点A,F,C,D在同一直线上,AF=DC,ABDE,AB=DE,连接BC,BF,CE求证:四边形BCEF是平行四边形24(10分)阅读与应用:阅读1:a、b为实数,且a0,b0,因为,所以,从而(当ab时取等号)阅读2:函数(常数m0,x0),由阅读1结论可知: ,所以当即时,函数的最小值为阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x_时,周长的最小值为_问题2:已知函数y1x1(x1)与函数y2x22x17(x1),当x_时, 的最小值为_问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用其中,其他费用与学生人数的平方成正比,比例系数为0.1当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入支出总费用÷学生人数)25(10分)如图,已知抛物线y=ax22ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D(1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由26(12分)已知:如图,.求证:.27(12分)已知ACDC,ACDC,直线MN经过点A,作DBMN,垂足为B,连接CB(1)直接写出D与MAC之间的数量关系;(2)如图1,猜想AB,BD与BC之间的数量关系,并说明理由;如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当BCD30°,BD时,直接写出BC的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】直接利用配方法得出二次函数的顶点式进而得出答案【详解】y=x24x+5=(x+2)2+9,即二次函数y=x24x+5的最大值是9,故选D【点睛】此题主要考查了二次函数的最值,正确配方是解题关键2、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案详解:A、BC=BC,AD=BC,AD=BC,所以A正确B、CBD=EDB,CBD=EBD,EBD=EDB,所以B正确D、sinABE=,EBD=EDBBE=DEsinABE=由已知不能得到ABECBD故选C点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法3、B【解析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为,得出方程:(80+2x)(50+2x)=5400,整理后得:故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.4、D【解析】A为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B为了解襄阳市电视台襄阳新闻栏目的收视率,选择抽样调查,故B不符合题意;C为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D5、C【解析】本题要先观察a,b在数轴上的位置,得b-10a1,然后对四个选项逐一分析【详解】A、因为b-10a1,所以|b|a|,所以a+b0,故选项A错误;B、因为b0a,所以ab0,故选项B错误;C、因为b-10a1,所以+0,故选项C正确;D、因为b-10a1,所以-0,故选项D错误故选C【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数6、C【解析】根据同底数幂的运算法则进行判断即可.【详解】解:A、a3a=3a2,故原选项计算错误;B、2a+3a=5a,故原选项计算错误;C、(ab)3=a3b3,故原选项计算正确;D、7a3÷14a2=a,故原选项计算错误;故选C【点睛】本题考点:同底数幂的混合运算.7、C【解析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得【详解】A、a2a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(-a2)3=-a6,此选项不符合题意;故选C【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则8、C【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;D.,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.9、B【解析】根据函数的图象和交点坐标即可求得结果【详解】解:不等式kx+b 的解集为:-6x0或x2,故选B【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用10、B【解析】根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.【详解】解:小昱所写的数为 1,3,5,1,101,;阿帆所写的数为 1,8,15,22,设小昱所写的第n个数为101,根据题意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2故选B.【点睛】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键11、D【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】880亿=880 0000 0000=8.8×1010,故选D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值12、D【解析】根据二次函数的图象与性质即可求出答案【详解】解:由抛物线的对称轴可知:,由抛物线与轴的交点可知:,故正确;抛物线与轴只有一个交点,故正确;令,故正确;由图象可知:令,即的解为,的根为,故正确;,故正确;故选D【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解【详解】解:,由不等式得x1,由不等式得x-1,其解集是-1x1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1故答案为:1【点睛】考查不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了14、4n【解析】试题解析:四边形A0B1A1C1是菱形,A0B1A1=60°,A0B1A1是等边三角形设A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:,解得m1=0(舍去),m1=1;故A0B1A1的边长为1,同理可求得A1B2A2的边长为2,依此类推,等边An-1BnAn的边长为n,故菱形An-1BnAnCn的周长为4n考点:二次函数综合题15、1【解析】根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解【详解】360°,445°,15180°341°故答案为:1【点睛】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键16、【解析】根据数据x1,x2,xn的平均数为=(x1+x2+xn),即可求出数据x1+1,x2+1,xn+1的平均数【详解】数据x1+1,x2+1,xn+1的平均数=(x1+1+x2+1+xn+1)=(x1+x2+xn)+1=+1故答案为+1【点睛】本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标17、0或1【解析】分析:需要分类讨论:若m=0,则函数y=2x+1是一次函数,与x轴只有一个交点;若m0,则函数y=mx2+2x+1是二次函数,根据题意得:=44m=0,解得:m=1。当m=0或m=1时,函数y=mx2+2x+1的图象与x轴只有一个公共点。18、10%【解析】设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解【详解】设平均每次上调的百分率是x,依题意得,解得:,(不合题意,舍去)答:平均每次上调的百分率为10%故答案是:10%【点睛】此题考查了一元二次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、每件乙种商品的价格为1元,每件甲种商品的价格为70元【解析】设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.【详解】解:设每件甲种商品的价格为x元,则每件乙种商品的价格为(x10)元,根据题意得:,解得:x=70,经检验,x=70是原方程的解,x10=1答:每件乙种商品的价格为1元,每件甲种商品的价格为70元【点睛】本题考查了分式方程的应用,解题的关键是:根据数量=总价÷单价,列出分式方程20、11【解析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论【详解】将x=2代入方程,得:11m+3m=0,解得:m=1当m=1时,原方程为x28x+12=(x2)(x6)=0,解得:x1=2,x2=6,2+2=16,此等腰三角形的三边为6、6、2,此等腰三角形的周长C=6+6+2=11【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质21、 (1)证明见解析;(2) PD=8-t,运动时间为秒时,四边形PBQD是菱形【解析】(1)先根据四边形ABCD是矩形,得出ADBC,PDO=QBO,再根据O为BD的中点得出PODQOB,即可证得OP=OQ;(2)根据已知条件得出A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形【详解】(1)四边形ABCD是矩形,ADBC,PDO=QBO,又O为BD的中点,OB=OD,在POD与QOB中,PODQOB,OP=OQ;(2)PD=8-t,四边形PBQD是菱形,BP=PD= 8-t,四边形ABCD是矩形,A=90°,在RtABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8-t)2,解得:t=,即运动时间为秒时,四边形PBQD是菱形【点睛】本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.22、(1)y1=-x1+ x-;(1)存在,T(1,),(1,),(1,);(3)y=x+或y=【解析】(1)应用待定系数法求解析式;(1)设出点T坐标,表示TAC三边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与AMG全等,分类讨论对应边相等的可能性即可【详解】解:(1)由已知,c=,将B(1,0)代入,得:a=0,解得a=,抛物线解析式为y1=x1- x+,抛物线y1平移后得到y1,且顶点为B(1,0),y1=(x1)1,即y1=-x1+ x-;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(3,0),C(0,),过点T作TEy轴于E,则TC1=TE1+CE1=11+()1=t1t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,当TC=AC时,t1t+=,解得:t1=,t1=;当TA=AC时,t1+16=,无解;当TA=TC时,t1t+=t1+16,解得t3=;当点T坐标分别为(1,),(1,),(1,)时,TAC为等腰三角形;(3)如图1:设P(m,),则Q(m,),Q、R关于x=1对称R(1m,),当点P在直线l左侧时,PQ=1m,QR=11m,PQR与AMG全等,当PQ=GM且QR=AM时,m=0,P(0,),即点P、C重合,R(1,),由此求直线PR解析式为y=x+,当PQ=AM且QR=GM时,无解;当点P在直线l右侧时,同理:PQ=m1,QR=1m1,则P(1,),R(0,),PQ解析式为:y=;PR解析式为:y=x+或y=【点睛】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键23、证明见解析【解析】首先证明ABCDEF(ASA),进而得出BC=EF,BCEF,进而得出答案【详解】ABDE,A=D,AF=CD,AC=DF,在ABC和DEF中,ABCDEF,BC=EF,ACB=DFE,BCEF,四边形BCEF是平行四边形【点睛】本题考查了全等三角形的判定与性质与平行四边形的判定,解题的关键是熟练的掌握全等三角形的判定与性质与平行四边形的判定.24、问题1: 2 8 问题2: 3 8 问题3:设学校学生人数为x人,生均投入为y元,依题意得: ,因为x0,所以,当即x=800时,y取最小值2答:当学校学生人数为800人时,该校每天生均投入最低,最低费用是2元. 【解析】试题分析:问题1:当 时,周长有最小值,求x的值和周长最小值;问题2:变形,由当x+1= 时, 的最小值,求出x值和的最小值;问题3:设学校学生人数为x人,生均投入为y元,根据生均投入=支出总费用÷学生人数,列出关系式,根据前两题解法,从而求解试题解析:问题1:当 ( x>0)时,周长有最小值,x=2,当x=2时,有最小值为=3即当x=2时,周长的最小值为2×3=8;问题2:y1x1(x1)与函数y2x22x17(x1),当x+1= (x1)时, 的最小值,x=3,x=3时, 有最小值为3+38,即当x=3时, 的最小值为8;问题3:设学校学生人数为x人,则生均投入y元,依题意得,因为x0,所以,当即x=800时,y取最小值2.答:当学校学生人数为800时,该校每天生均投入最低,最低费用是2元25、(1)y=x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2,0),Q1(2+,0),Q4(,0),Q5(,0).【解析】(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标(1)此题要分三种情况讨论:点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;M、N在x轴下方,且以N为直角顶点时,方法同【详解】解:(1)由y=ax22ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(1,0);OC=1OA,C(0,1);依题意有:,解得;y=x2+2x+1(2)存在DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),C(0,1),P(2,1),CP=2,D(1,4),CD=2,由此时CDPD,根据垂线段最短可得,PC不可能与CD相等;PC=PD时,CP22=(1y)2+x2,DP22=(x1)2+(4y)2(1y)2+x2=(x1)2+(4y)2将y=x2+2x+1代入可得:, ;P2(,)综上所述,P(2,1)或(,)(1)存在,且Q1(1,0),Q2(2,0),Q1(2+,0),Q4(,0),Q5(,0);若Q是直角顶点,由对称性可直接得Q1(1,0);若N是直角顶点,且M、N在x轴上方时;设Q2(x,0)(x1),MN=2Q1O2=2(1x),Q2MN为等腰直角三角形;y=2(1x)即x2+2x+1=2(1x);x1,Q2(,0);由对称性可得Q1(,0);若N是直角顶点,且M、N在x轴下方时;同理设Q4(x,y),(x1)Q1Q4=1x,而Q4N=2(Q1Q4),y为负,y=2(1x),(x2+2x+1)=2(1x),x1,x=,Q4(-,0);由对称性可得Q5(+2,0)【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.26、见解析【解析】先通过BAD=CAE得出BAC=DAE,从而证明ABCADE,得到BC=DE【详解】证明:BAD=CAE,BAD+DAC=CAE+DAC即BAC=DAE,在ABC和ADE中,,ABCADE(SAS)BC=DE【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL27、(1)相等或互补;(2)BD+ABBC;ABBDBC;(3)BC 或.【解析】(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)作辅助线,证明BCDFCA,得BCFC,BCDFCA,FCB90°,即BFC是等腰直角三角形,即可解题, 在射线AM上截取AFBD,连接CF,证明BCDFCA,得BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,ACCD,BDMN,ACDBDC90°,在四边形ABDC中,BAD+D360°ACDBDC180°,BAC+CAM180°,CAMD;当点C,D在直线MN两侧时,如图2,ACDABD90°,AECBED,CABD,CAB+CAM180°,CAM+D180°,即:D与MAC之间的数量是相等或互补;(2)猜想:BD+ABBC如图3,在射线AM上截取AFBD,连接CF又DFAC,CDACBCDFCA,BCFC,BCDFCAACCDACD90°即ACB+BCD90°ACB+FCA90°即FCB90°BFAF+ABBFBD+AB;如图2,在射线AM上截取AFBD,连接CF,又DFAC,CDACBCDFCA,BCFC,BCDFCAACCDACD90°即ACB+BCD90°ACB+FCA90°即FCB90°BFABAFBFABBD;(3)当点C,D在直线MN同侧时,如图31,由(2)知,ACFDCB,CFBC,ACFACD90°,ABC45°,ABD90°,CBD45°,过点D作DGBC于G,在RtBDG中,CBD45°,BD,DGBG1,在RtCGD中,BCD30°,CGDG,BCCG+BG+1,当点C,D在直线MN两侧时,如图21,过点D作DGCB交CB的延长线于G,同的方法得,BG1,CG,BCCGBG1即:BC 或,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.