欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023届湖北省武汉市黄陂区部分学校中考数学适应性模拟试题含解析.doc

    • 资源ID:87841400       资源大小:638.50KB        全文页数:18页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023届湖北省武汉市黄陂区部分学校中考数学适应性模拟试题含解析.doc

    2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则DEF的面积与BAF的面积之比为( )A3:4B9:16C9:1D3:12在数轴上表示不等式2(1x)4的解集,正确的是()ABCD3某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同设每个笔记本的价格为x元,则下列所列方程正确的是()ABCD4如图,在ABC中,点D在BC上,DEAC,DFAB,下列四个判断中不正确的是( )A四边形AEDF是平行四边形B若BAC90°,则四边形AEDF是矩形C若AD平分BAC,则四边形AEDF是矩形D若ADBC且ABAC,则四边形AEDF是菱形5已知关于x,y的二元一次方程组的解为,则a2b的值是()A2B2C3D36下列运算错误的是()A(m2)3=m6 Ba10÷a9=a Cx3x5=x8 Da4+a3=a77若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:ABCD8如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A2B0C1D49下列调查中,最适合采用全面调查(普查)的是()A对我市中学生每周课外阅读时间情况的调查B对我市市民知晓“礼让行人”交通新规情况的调查C对我市中学生观看电影厉害了,我的国情况的调查D对我国首艘国产航母002型各零部件质量情况的调查10老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )A甲B乙C丙D丁二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在等腰RtABC中,BAC90°,ABAC,BC4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为_12如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C若点A的坐标为(,4),则AOC的面积为 13如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点(1)OM的长等于_;(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的14一个n边形的内角和为1080°,则n=_.15如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_16如图,ABC内接于O,AB是O的直径,点D在圆O上,BDCD,AB10,AC6,连接OD交BC于点E,DE_三、解答题(共8题,共72分)17(8分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?18(8分)计算:+-2+6tan30°19(8分)如图,在ABC中,CAB90°,CBA50°,以AB为直径作O交BC于点D,点E在边AC上,且满足EDEA(1)求DOA的度数;(2)求证:直线ED与O相切20(8分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元 (1)求A、B两种钢笔每支各多少元? (2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案? (3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?21(8分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1)(1)求抛物线的解析式;(2)猜想EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由22(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积23(12分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元(1)该顾客至少可得到_元购物券,至多可得到_元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率24如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE(1)求证:DEAG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°360°)得到正方形OEFG,如图1在旋转过程中,当OAG是直角时,求的度数;若正方形ABCD的边长为1,在旋转过程中,求AF长的最大值和此时的度数,直接写出结果不必说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】可证明DFEBFA,根据相似三角形的面积之比等于相似比的平方即可得出答案【详解】四边形ABCD为平行四边形,DCAB,DFEBFA,DE:EC=3:1,DE:DC=3:4,DE:AB=3:4,SDFE:SBFA=9:1故选B2、A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集 2(1 x)4去括号得:224移项得:2x2,系数化为1得:x1,故选A “点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变3、B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可考点:由实际问题抽象出分式方程4、C【解析】A选项,在ABC中,点D在BC上,DEAC,DFAB,DEAF,DFAE,四边形AEDF是平行四边形;即A正确;B选项,四边形AEDF是平行四边形,BAC=90°,四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,ADBC”可证明AD平分BAC,从而可通过证EAD=CAD=EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.5、B【解析】把代入方程组得:,解得:,所以a2b=2×()=2.故选B.6、D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3x5=x8,正确;D、a4+a3=a4+a3,错误,故选D【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.7、B【解析】由方程有两个不相等的实数根,可得,解得,即异号,当时,一次函数的图象过一三四象限,当时,一次函数的图象过一二四象限,故答案选B.8、C【解析】【分析】首先确定原点位置,进而可得C点对应的数【详解】点A、B表示的数互为相反数,AB=6原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又BC=2,点C在点B的左边,点C对应的数是1,故选C【点睛】本题主要考查了数轴,关键是正确确定原点位置9、D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似由此,对各选项进行辨析即可.【详解】A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影厉害了,我的国情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选D【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查10、B【解析】利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;【详解】五边形ABCDE是正五边形,ABG是等边三角形,直线DG是正五边形ABCDE和正三角形ABG的对称轴,DG垂直平分线段AB,BCD=BAE=EDC=108°,BCA=BAC=36°,DCA=72°,CDE+DCA=180°,DEAC,CDF=EDF=CFD=72°,CDF是等腰三角形故丁、甲、丙正确故选B【点睛】本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到AED=90°,接着由AEB=90°得到点E在以AB为直径的 O上,于是当点O、E、C共线时,CE最小,如图2,在RtAOC中利用勾股定理计算出OC=2,从而得到CE的最小值为22.【详解】连结AE,如图1,BAC=90°,AB=AC,BC=,AB=AC=4,AD为直径,AED=90°,AEB=90°,点E在以AB为直径的O上,O的半径为2,当点O、E. C共线时,CE最小,如图2在RtAOC中,OA=2,AC=4,OC=,CE=OCOE=22,即线段CE长度的最小值为22.故答案为:22.【点睛】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.12、2【解析】解:OA的中点是D,点A的坐标为(6,4),D(1,2),双曲线y=经过点D,k=1×2=6,BOC的面积=|k|=1又AOB的面积=×6×4=12,AOC的面积=AOB的面积BOC的面积=121=213、(1)4;(2)见解析;【解析】解:(1)由勾股定理可得OM的长度 (2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。【详解】(1)OM=4;故答案为4(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0a4),PA2=(a1)2+a2,PB2=(a4)2+a2,PA2+PB2=4(a)2+,0a4,当a=时,PA2+PB2 取得最小值,综上,需作出点P满足线段OP的长=;取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,则点P即为所求【点睛】(1) 根据勾股定理即可得到结论;(2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.14、1【解析】直接根据内角和公式计算即可求解.【详解】(n2)110°=1010°,解得n=1故答案为1【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.15、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方16、1【解析】先利用垂径定理得到ODBC,则BE=CE,再证明OE为ABC的中位线得到,入境计算ODOE即可【详解】解:BDCD,ODBC,BECE,而OAOB,OE为ABC的中位线,DEODOE531故答案为1【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.三、解答题(共8题,共72分)17、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元【解析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数(2)根据平均数,中位数,众数的意义回答【详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元)(2)今年每个销售人员统一的销售标准应是5万元理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成因此把5万元定为标准比较合理【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.18、10 +【解析】根据实数的性质进行化简即可计算.【详解】原式=9-1+2-+6×=10-=10 +【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.19、(1)DOA =100°;(2)证明见解析.【解析】试题分析:(1)根据CBA=50°,利用圆周角定理即可求得DOA的度数;(2)连接OE,利用SSS证明EAOEDO,根据全等三角形的性质可得EDO=EAO=90°,即可证明直线ED与O相切试题解析:(1)DBA=50°,DOA=2DBA=100°;(2)证明:连接OE,在EAO和EDO中,AO=DO,EA=ED,EO=EO,EAOEDO,得到EDO=EAO=90°,直线ED与O相切考点:圆周角定理;全等三角形的判定及性质;切线的判定定理20、(1) A种钢笔每只15元 B种钢笔每只20元;(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3) 定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得 ,解得: ,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:,42.4z<45,z是整数z=43,44,90-z=47,或46;共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,-4<0,W有最大值,a为正整数,当a=3,或a=4时,W最大,W最大=-4×(3-)²+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元21、(1)y=x2+3x;(2)EDB为等腰直角三角形;证明见解析;(3)(,2)或(,2)【解析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FMAN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标【详解】解:(1)在矩形OABC中,OA=4,OC=3,A(4,0),C(0,3),抛物线经过O、A两点,抛物线顶点坐标为(2,3),可设抛物线解析式为y=a(x2)2+3,把A点坐标代入可得0=a(42)2+3,解得a=,抛物线解析式为y=(x2)2+3,即y=x2+3x;(2)EDB为等腰直角三角形证明:由(1)可知B(4,3),且D(3,0),E(0,1),DE2=32+12=10,BD2=(43)2+32=10,BE2=42+(31)2=20,DE2+BD2=BE2,且DE=BD,EDB为等腰直角三角形;(3)存在理由如下:设直线BE解析式为y=kx+b,把B、E坐标代入可得,解得,直线BE解析式为y=x+1,当x=2时,y=2,F(2,2),当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,点M的纵坐标为2或2,在y=x2+3x中,令y=2可得2=x2+3x,解得x=,点M在抛物线对称轴右侧,x2,x=,M点坐标为(,2);在y=x2+3x中,令y=2可得2=x2+3x,解得x=,点M在抛物线对称轴右侧,x2,x=,M点坐标为(,2);当AF为平行四边形的对角线时,A(4,0),F(2,2),线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),设M(t,t2+3t),N(x,0),则t2+3t=2,解得t=,点M在抛物线对称轴右侧,x2,t2,t=,M点坐标为(,2);综上可知存在满足条件的点M,其坐标为(,2)或(,2)【点睛】本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得EDB各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论本题考查知识点较多,综合性较强,难度较大22、(1)见详解;(2)x=18;(3) 416 m2.【解析】(1)根据“垂直于墙的长度=可得函数解析式;(2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得【详解】(1)根据题意知,yx;(2)根据题意,得(x)x384,解得x18或x32.墙的长度为24 m,x18.(3)设菜园的面积是S,则S(x)xx2x (x25)2.0,当x25时,S随x的增大而增大.x24,当x24时,S取得最大值,最大值为416.答:菜园的最大面积为416 m2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题23、解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)= ;解法二(列表法):(以下过程同“解法一”)【解析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回)即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元);解法二(列表法):01020300102030101030402020305030304050从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元);考点:列表法与树状图法.【详解】请在此输入详解!24、(1)见解析;(1)30°或150°,的长最大值为,此时【解析】(1)延长ED交AG于点H,易证AOGDOE,得到AGO=DEO,然后运用等量代换证明AHE=90°即可;(1)在旋转过程中,OAG成为直角有两种情况:由0°增大到90°过程中,当OAG=90°时,=30°,由90°增大到180°过程中,当OAG=90°时,=150°;当旋转到A、O、F在一条直线上时,AF的长最大,AF=AO+OF=+1,此时=315°【详解】(1)如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,OA=OD,OAOD,OG=OE,在AOG和DOE中,AOGDOE,AGO=DEO,AGO+GAO=90°,GAO+DEO=90°,AHE=90°,即DEAG;(1)在旋转过程中,OAG成为直角有两种情况:()由0°增大到90°过程中,当OAG=90°时,OA=OD=OG=OG,在RtOAG中,sinAGO=,AGO=30°,OAOD,OAAG,ODAG,DOG=AGO=30°,即=30°;()由90°增大到180°过程中,当OAG=90°时,同理可求BOG=30°,=180°30°=150°.综上所述,当OAG=90°时,=30°或150°.如图3,当旋转到A. O、F在一条直线上时,AF的长最大,正方形ABCD的边长为1,OA=OD=OC=OB=,OG=1OD,OG=OG=,OF=1,AF=AO+OF=+1,COE=45°,此时=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用

    注意事项

    本文(2023届湖北省武汉市黄陂区部分学校中考数学适应性模拟试题含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开