2023届陕西省铜川市达标名校中考数学最后冲刺模拟试卷含解析.doc
-
资源ID:87841457
资源大小:766KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届陕西省铜川市达标名校中考数学最后冲刺模拟试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数yx的图象被P截得的弦AB的长为4,则a的值是()A4B3C3D2如图,将ABC绕点C旋转60°得到ABC,已知AC=6,BC=4,则线段AB扫过的图形面积为()ABC6D以上答案都不对3如图,是的直径,弦,则阴影部分的面积为( )A2BCD4如图是一个由4个相同的正方体组成的立体图形,它的主视图是()ABCD5一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:abc<0;b2>4ac;4a+2b+c<0;2a+b=0.其中正确的结论有:A4个B3个C2个D1个6一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是()A4B5C10D117下列计算错误的是()Aaa=a2B2a+a=3aC(a3)2=a5Da3÷a1=a48下列运算结果为正数的是( )A1+(2)B1(2)C1×(2)D1÷(2)9弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数2341分数80859095则得分的众数和中位数分别是( )A90和87.5B95和85C90和85D85和87.510如图,ABC在平面直角坐标系中第二象限内,顶点A的坐标是(2,3),先把ABC向右平移6个单位得到A1B1C1,再作A1B1C1关于x轴对称图形A2B2C2,则顶点A2的坐标是()A(4,3)B(4,3)C(5,3)D(3,4)二、填空题(共7小题,每小题3分,满分21分)11若,则= 12如图,RtABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴正半轴于点E,双曲线y=(x0)的图象经过点A,SBEC=8,则k=_13如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是_14分解因式:x29_ 15大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为_cm162018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_. 17一元二次方程有两个不相等的实数根,则的取值范围是_三、解答题(共7小题,满分69分)18(10分)已知ABC内接于O,AD平分BAC(1)如图1,求证:;(2)如图2,当BC为直径时,作BEAD于点E,CFAD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交O于点G,连接OE,若EF=2EG,AC=2,求OE的长19(5分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成已知每件产品的出厂价为60元工人甲第x天生产的产品数量为y件,y与x满足如下关系:工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?20(8分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由21(10分)如图,四边形ABCD的外接圆为O,AD是O的直径,过点B作O的切线,交DA的延长线于点E,连接BD,且EDBC(1)求证:DB平分ADC;(2)若EB10,CD9,tanABE,求O的半径22(10分)如图,已知BD是ABC的角平分线,点E、F分别在边AB、BC上,EDBC,EFAC求证:BE=CF23(12分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m1623x请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由24(14分)如图,在四边形ABCD中,ADBC,B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边EFG,设E点移动距离为x(0x6)(1)DCB= 度,当点G在四边形ABCD的边上时,x= ;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;(3)当2x6时,求EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题解析:作PCx轴于C,交AB于D,作PEAB于E,连结PB,如图,P的圆心坐标是(3,a),OC=3,PC=a,把x=3代入y=x得y=3,D点坐标为(3,3),CD=3,OCD为等腰直角三角形,PED也为等腰直角三角形,PEAB,AE=BE=AB=×4=2,在RtPBE中,PB=3,PE=,PD=PE=,a=3+故选B考点:1垂径定理;2一次函数图象上点的坐标特征;3勾股定理2、D【解析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积【详解】阴影面积=故选D【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形3、D【解析】分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可详解:连接OD,CDAB, (垂径定理),故 即可得阴影部分的面积等于扇形OBD的面积,又 (圆周角定理),OC=2,故S扇形OBD= 即阴影部分的面积为.故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.4、D【解析】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.【详解】从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,D是该几何体的主视图.故选D.【点睛】本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.5、B【解析】试题解析:二次函数的图象的开口向下,a<0,二次函数的图象y轴的交点在y轴的正半轴上,c>0,二次函数图象的对称轴是直线x=1, 2a+b=0,b>0abc<0,故正确;抛物线与x轴有两个交点, 故正确;二次函数图象的对称轴是直线x=1,抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>04a+2b+c>0,故错误;二次函数图象的对称轴是直线x=1,2a+b=0,故正确综上所述,正确的结论有3个.故选B.6、B【解析】试题分析:(4+x+3+30+33)÷3=7,解得:x=3,根据众数的定义可得这组数据的众数是3故选B考点:3众数;3算术平均数7、C【解析】解:A、aa=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a1=a4,正确,不合题意;故选C【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂8、B【解析】分别根据有理数的加、减、乘、除运算法则计算可得【详解】解:A、1+(2)(21)1,结果为负数;B、1(2)1+23,结果为正数;C、1×(2)1×22,结果为负数;D、1÷(2)1÷2,结果为负数;故选B【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键9、A【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;故选:A“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数10、A【解析】直接利用平移的性质结合轴对称变换得出对应点位置【详解】如图所示:顶点A2的坐标是(4,-3)故选A【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题分析:有意义,必须,解得:x=3,代入得:y=0+0+2=2,=1故答案为1考点:二次根式有意义的条件12、1【解析】BD是RtABC斜边上的中线,BD=CD=AD,DBC=ACB,又DBC=OBE,BOE=ABC=90°,ABCEOB, ABOB=BCOE,SBEC=×BCOE=8,ABOB=1,k=xy=ABOB=113、【解析】试题解析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OMAB,且OC=MC=1,在RTAOC中,OA=2,OC=1,cosAOC=,AC=AOC=60°,AB=2AC=2,AOB=2AOC=120°,则S弓形ABM=S扇形OAB-SAOB=,S阴影=S半圆-2S弓形ABM=×22-2()=2故答案为214、 (x3)(x3)【解析】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).15、(155)【解析】先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长【详解】P为AB的黄金分割点(APPB),AP=AB=×10=55,PB=ABPA=10(55)=(155)cm故答案为(155)【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点其中AC=AB16、【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数,表示时关键要正确确定a的值以及n的值17、且【解析】根据一元二次方程的根与判别式的关系,结合一元二次方程的定义解答即可.【详解】由题意可得,1k0,4+4(1k)0,k2且k1.故答案为k2且k1.【点睛】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k0的考虑三、解答题(共7小题,满分69分)18、(1)证明见解析;(1)证明见解析;(3)1.【解析】(1)连接OB、OC、OD,根据圆心角与圆周角的性质得BOD=1BAD,COD=1CAD,又AD平分BAC,得BOD=COD,再根据圆周角相等所对的弧相等得出结论.(1)过点O作OMAD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;(3)延长EO交AB于点H,连接CG,连接OA,BC为O直径,则G=CFE=FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分BAC,再根据邻补角与余角的性质可得BAF=ABE,ACF=CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出HBOABC,根据相似三角形的性质得出对应边成比例,进而得出结论.【详解】(1)如图1,连接OB、OC、OD,BAD和BOD是所对的圆周角和圆心角,CAD和COD是所对的圆周角和圆心角,BOD=1BAD,COD=1CAD,AD平分BAC,BAD=CAD,BOD=COD,=;(1)如图1,过点O作OMAD于点M,OMA=90°,AM=DM,BEAD于点E,CFAD于点F,CFM=90°,MEB=90°,OMA=MEB,CFM=OMA,OMBE,OMCF,BEOMCF,OB=OC,=1,FM=EM,AMFM=DMEM,DE=AF;(3)延长EO交AB于点H,连接CG,连接OABC为O直径,BAC=90°,G=90°,G=CFE=FEG=90°,四边形CFEG是矩形,EG=CF,AD平分BAC,BAF=CAF=×90°=45°,ABE=180°BAFAEB=45°,ACF=180°CAFAFC=45°,BAF=ABE,ACF=CAF,AE=BE,AF=CF,在RtACF中,AFC=90°,sinCAF=,即sin45°=,CF=1×=,EG=,EF=1EG=1,AE=3,在RtAEB中,AEB=90°,AB=6,AE=BE,OA=OB,EH垂直平分AB,BH=EH=3,OHB=BAC,ABC=ABCHBOABC,OH=1,OE=EHOH=31=1【点睛】本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.19、 (1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元【解析】分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可本题解析:解:(1)若7.5x70,得x>4,不符合题意;则5x1070,解得x12.答:工人甲第12天生产的产品数量为70件(2)由函数图象知,当0x4时,P40,当4<x14时,设Pkxb,将(4,40)、(14,50)代入,得解得Px36.当0x4时,W(6040)·7.5x150x,W随x的增大而增大,当x4时,W最大600;当4<x14时,W(60x36)(5x10)5x2110x2405(x11)2845,当x11时,W最大845.845>600,当x11时,W取得最大值845元答:第11天时,利润最大,最大利润是845元点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题20、(1)10%;(1)会跌破10000元/m1【解析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,14000(1-x)1=11340,(1-x)1=0.81,x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=11340×0.81=9184.510000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键21、(1)详见解析;(2)OA【解析】(1)连接OB,证明ABE=ADB,可得ABE=BDC,则ADB=BDC;(2)证明AEBCBD,AB=x,则BD=2x,可求出AB,则答案可求出【详解】(1)证明:连接OB,BE为O的切线,OBBE,OBE90°,ABE+OBA90°,OAOB,OBAOAB,ABE+OAB90°,AD是O的直径,OAB+ADB90°,ABEADB,四边形ABCD的外接圆为O,EABC,EDBC,ABEBDC,ADBBDC,即DB平分ADC;(2)解:tanABE,设ABx,则BD2x,BAEC,ABEBDC,AEBCBD,解得x3,ABx15,OA【点睛】本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题22、证明见解析【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题试题解析:EDBC,EFAC,四边形EFCD是平行四边形,DE=CF,BD平分ABC,EBD=DBC,DEBC,EDB=DBC,EBD=EDB,EB=ED,EB=CF考点:平行四边形的判定与性质23、(1)y=3x2+252x1(2x54);(2)商场每天销售这种商品的销售利润不能达到500元【解析】(1)此题可以按等量关系“每天的销售利润=(销售价进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案【详解】(1)由题意得:每件商品的销售利润为(x2)元,那么m件的销售利润为y=m(x2)又m=1623x,y=(x2)(1623x),即y=3x2+252x1x20,x2又m0,1623x0,即x54,2x54,所求关系式为y=3x2+252x1(2x54)(2)由(1)得y=3x2+252x1=3(x42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元500432,商场每天销售这种商品的销售利润不能达到500元【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法24、 (1) 30;2;(2)x=1;(3)当x=时,y最大=;【解析】(1)如图1中,作DHBC于H,则四边形ABHD是矩形AD=BH=3,BC=6,CH=BCBH=3,当等边三角形EGF的高= 时,点G在AD上,此时x=2;(2)根据勾股定理求出的长度,根据三角函数,求出ADB=30°,根据中点的定义得出根据等边三角形的性质得到,即可求出x的值;(3)图2,图3三种情形解决问题当2<x<3时,如图2中,点E、F在线段BC上,EFG与四边形ABCD重叠部分为四边形EFNM;当3x<6时,如图3中,点E在线段BC上,点F在射线BC上,重叠部分是ECP;【详解】(1)作DHBC于H,则四边形ABHD是矩形AD=BH=3,BC=6,CH=BCBH=3,在RtDHC中,CH=3, 当等边三角形EGF的高等于时,点G在AD上,此时x=2,DCB=30°,故答案为30,2,(2)如图ADBCA=180°ABC=180°90°=90°在RtABD中, ADB=30°G是BD的中点 ADBCADB=DBC=30°GEF是等边三角形,GFE=60°BGF=90°在RtBGF中, 2x=2即x=1;(3)分两种情况:当2x3,如图2点E、点F在线段BC上GEF与四边形ABCD重叠部分为四边形EFNMFNC=GFEDCB=60°30°=30°FNC=DCBFN=FC=62xGN=x(62x)=3x6FNC=GNM=30°,G=60°GMN=90°在RtGNM中, 当时,最大 当3x6时,如图3,点E在线段BC上,点F在线段BC的延长线上,GEF与四边形ABCD重叠部分为ECPPCE=30°,PEC=60°EPC=90°在RtEPC中EC=6x, 对称轴为 当x6时,y随x的增大而减小当x=3时,最大综上所述:当时,最大【点睛】属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.