2023届重庆市两江巴蜀中学中考一模数学试题含解析.doc
-
资源ID:87841578
资源大小:774KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届重庆市两江巴蜀中学中考一模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()Ak8Bk8Ck8Dk82O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则n的值为( )A3B4C6D83如果ab=5,那么代数式(2)的值是()ABC5D54平面直角坐标系中,若点A(a,b)在第三象限内,则点B(b,a)所在的象限是()A第一象限B第二象限C第三象限D第四象限5如图,在ABCD中,AB1,AC4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F若ACAB,则FD的长为()A2B3C4D66为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)2530405060户数12421A极差是3B众数是4C中位数40D平均数是20.57我国古代数学家刘徽创立的“割圆术”可以估算圆周率,理论上能把的值计算到任意精度祖冲之继承并发展了“割圆术”,将的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为()AB2CD8如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tanAON的值为()ABCD9下列计算正确的是ABCD10下列计算正确的是()A2a2a21B(ab)2ab2Ca2+a3a5D(a2)3a6二、填空题(本大题共6个小题,每小题3分,共18分)11分解因式:4ax2-ay2=_.12如图,PA、PB是O的切线,A、B为切点,AC是O的直径,P= 40°,则BAC= .13计算:(a2)2=_14如图,A、D是O上的两个点,BC是直径,若D40°,则OAC_度15如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若BDE的面积为1,则k =_16如图,点A,B,C在O上,OBC=18°,则A=_三、解答题(共8题,共72分)17(8分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)(1)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;(2)把A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长18(8分)如图,已知O中,AB为弦,直线PO交O于点M、N,POAB于C,过点B作直径BD,连接AD、BM、AP(1)求证:PMAD;(2)若BAP=2M,求证:PA是O的切线;(3)若AD=6,tanM=,求O的直径19(8分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元20(8分)如图,O中,AB是O的直径,G为弦AE的中点,连接OG并延长交O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC(1)求证:BC是O的切线;(2)O的半径为5,tanA=,求FD的长21(8分)如图,已知AB是O上的点,C是O上的点,点D在AB的延长线上,BCD=BAC求证:CD是O的切线;若D=30°,BD=2,求图中阴影部分的面积22(10分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?23(12分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?24解不等式组参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】本题考查反比例函数的图象和性质,由k-80即可解得答案【详解】反比例函数y=的图象位于第一、第三象限,k-80,解得k8,故选A【点睛】本题考查了反比例函数的图象和性质:、当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限、当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大2、C【解析】根据题意可以求出这个正n边形的中心角是60°,即可求出边数.【详解】O是一个正n边形的外接圆,若O的半径与这个正n边形的边长相等,则这个正n边形的中心角是60°, n的值为6,故选:C【点睛】考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.3、D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(2)=a-b,当a-b=5时,原式=5,故选D.4、D【解析】分析:根据题意得出a和b的正负性,从而得出点B所在的象限详解:点A在第三象限, a0,b0, 即a0,b0, 点B在第四象限,故选D点睛:本题主要考查的是象限中点的坐标特点,属于基础题型明确各象限中点的横纵坐标的正负性是解题的关键5、C【解析】利用平行四边形的性质得出ADFEBF,得出=,再根据勾股定理求出BO的长,进而得出答案【详解】解:在ABCD中,对角线AC、BD相交于O,BO=DO,AO=OC,ADBC,ADFEBF,=,AC=4,AO=2,AB=1,ACAB,BO=3,BD=6,E是BC的中点,=,BF=2, FD=4.故选C.【点睛】本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.6、C【解析】极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;故选:C【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念7、C【解析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6××1×1×sin60°=故选C【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答8、A【解析】过O作OCAB于C,过N作NDOA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在RtNDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tanAON=求出即可【详解】过O作OCAB于C,过N作NDOA于D,N在直线y=x+3上,设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,A(-4,0),B(0,3),即OA=4,OB=3,在AOB中,由勾股定理得:AB=5,在AOB中,由三角形的面积公式得:AO×OB=AB×OC,3×4=5OC,OC=,在RtNOM中,OM=ON,MON=90°,MNO=45°,sin45°=,ON=,在RtNDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,N在第二象限,x只能是-,x+3=,即ND=,OD=,tanAON=故选A【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强9、C【解析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可【详解】、与不是同类项,不能合并,此选项错误;、,此选项错误;、,此选项正确;、,此选项错误故选:【点睛】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键10、D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2a2a2,故A错误;B、(ab)2a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3a6,故D正确,故选D【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、a(2x+y)(2x-y)【解析】首先提取公因式a,再利用平方差进行分解即可【详解】原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为a(2x+y)(2x-y)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止12、20°【解析】根据切线的性质可知PAC90°,由切线长定理得PAPB,P40°,求出PAB的度数,用PACPAB得到BAC的度数【详解】解:PA是O的切线,AC是O的直径,PAC90°PA,PB是O的切线,PAPBP40°,PAB(180°P)÷2(180°40°)÷270°,BACPACPAB90°70°20°故答案为20°【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数13、a1【解析】根据幂的乘方法则进行计算即可.【详解】 故答案为【点睛】考查幂的乘方,掌握运算法则是解题的关键.14、50【解析】根据BC是直径得出BD40°,BAC90°,再根据半径相等所对应的角相等求出BAO,在直角三角形BAC中即可求出OAC【详解】BC是直径,D40°,BD40°,BAC90°OAOB,BAOB40°,OACBACBAO90°40°50°故答案为:50【点睛】本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键15、1【解析】分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到a(-)=1,最后解方程即可详解:设D(a,),点D为矩形OABC的AB边的中点,B(2a,),E(2a,),BDE的面积为1,a(-)=1,解得k=1故答案为1点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值16、72°【解析】解:OB=OC,OBC=18°,BCO=OBC=18°,BOC=180°2OBC=180°2×18°=144°,A=BOC=×144°=72°故答案为 72°【点睛】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键三、解答题(共8题,共72分)17、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算18、(1)证明见解析;(2)证明见解析;(3)1;【解析】(1)根据平行线的判定求出即可;(2)连接OA,求出OAP=BAP+OAB=BOC+OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可【详解】(1)BD是直径,DAB=90°,POAB,DAB=MCB=90°,PMAD;(2)连接OA,OB=OM,M=OBM,BON=2M,BAP=2M,BON=BAP,POAB,ACO=90°,AON+OAC=90°,OA=OB,BON=AON,BAP=AON,BAP+OAC=90°,OAP=90°,OA是半径,PA是O的切线;(3)连接BN,则MBN=90°tanM=,=,设BC=x,CM=2x,MN是O直径,NMAB,MBN=BCN=BCM=90°,NBC=M=90°BNC,MBCBNC,BC2=NC×MC,NC=x,MN=2x+x=2.1x,OM=MN=1.21x,OC=2x1.21x=0.71x,O是BD的中点,C是AB的中点,AD=6,OC=0.71x=AD=3,解得:x=4,MO=1.21x=1.21×4=1,O的半径为1【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度19、(1)一天可获利润2000元;(2)每件商品应降价2元或8元;当2x8时,商店所获利润不少于2160元【解析】:(1)原来一天可获利:20×100=2000元;(2)y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,每件商品应降价2或8元;观察图像可得20、(1)证明见解析(2) 【解析】(1)由点G是AE的中点,根据垂径定理可知ODAE,由等腰三角形的性质可得CBF=DFG,D=OBD,从而OBD+CBF=90°,从而可证结论;(2)连接AD,解RtOAG可求出OG=3,AG=4,进而可求出DG的长,再证明DAGFDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.【详解】(1)点G是AE的中点,ODAE,FC=BC,CBF=CFB,CFB=DFG,CBF=DFGOB=OD,D=OBD,D+DFG=90°,OBD+CBF=90°即ABC=90°OB是O的半径,BC是O的切线;(2)连接AD,OA=5,tanA=,OG=3,AG=4,DG=ODOG=2,AB是O的直径,ADF=90°,DAG+ADG=90°,ADG+FDG=90°DAG=FDG,DAGFDG,DG2=AGFG,4=4FG,FG=1由勾股定理可知:FD=.【点睛】本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出CBF=DFG,D=OBD是解(1)的关键,证明证明DAGFDG是解(2)的关键.21、(1)证明见解析;(2)阴影部分面积为【解析】【分析】(1)连接OC,易证BCD=OCA,由于AB是直径,所以ACB=90°,所以OCA+OCB=BCD+OCB=90°,CD是O的切线;(2)设O的半径为r,AB=2r,由于D=30°,OCD=90°,所以可求出r=2,AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,OA=OC,BAC=OCA,BCD=BAC,BCD=OCA,AB是直径,ACB=90°,OCA+OCB=BCD+OCB=90°OCD=90°OC是半径,CD是O的切线(2)设O的半径为r,AB=2r,D=30°,OCD=90°,OD=2r,COB=60°r+2=2r,r=2,AOC=120°BC=2,由勾股定理可知:AC=2,易求SAOC=×2×1=S扇形OAC=,阴影部分面积为.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.22、(1)该区抽样调查的人数是2400人;(2)见解析,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)估计最喜欢读“名人传记”的学生是4896人【解析】(1)由“科普知识”人数及其百分比可得总人数;(2)总人数乘以“漫画丛书”的人数求得其人数即可补全图形,用360°乘以“其他”人数所占比例可得;(3)总人数乘以“名人传记”的百分比可得【详解】(1)840÷35%=2400(人),该区抽样调查的人数是2400人;(2)2400×25%=600(人),该区抽样调查最喜欢“漫画丛书”的人数是600人,补全图形如下:×360°=21.6°,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)从样本估计总体:14400×34%=4896(人),答:估计最喜欢读“名人传记”的学生是4896人【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比23、甲、乙两种节能灯分别购进40、60只;商场获利1300元【解析】(1)利用节能灯数量和所用的价钱建立方程组即可;(2)每种灯的数量乘以每只灯的利润,最后求出之和即可【详解】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得 ,答:甲、乙两种节能灯分别购进40、60只(2)商场获利元,答:商场获利1300元【点睛】此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量24、x1【解析】分析:按照解一元一次不等式组的一般步骤解答即可.详解:,由得x1,由得x1,原不等式组的解集是x1点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.