2023届黑龙江省安达市吉星岗镇第一中学中考五模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在菱形ABCD中,AB=5,BCD=120°,则ABC的周长等于( )A20B15C10D52化简的结果是()A B C D3一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是()A13B14C15D164下列计算正确的是()Aa2a3=a5 B2a+a2=3a3 C(a3)3=a6 Da2÷a=25如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A3B4C5D66已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )A3.61×106B3.61×107C3.61×108D3.61×1097石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是( )A3.4×10-9mB0.34×10-9mC3.4×10-10mD3.4×10-11m8已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D59a、b是实数,点A(2,a)、B(3,b)在反比例函数y=的图象上,则()Aab0Bba0Ca0bDb0a10若m,n是一元二次方程x22x1=0的两个不同实数根,则代数式m2m+n的值是()A1B3C3D111下列运算正确的是()A3a22a2=1Ba2a3=a6C(ab)2=a2b2D(a+b)2=a2+2ab+b212如图,AB是O的直径,点E为BC的中点,AB=4,BED=120°,则图中阴影部分的面积之和为( )A1BCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,AB是O的直径,且经过弦CD的中点H,过CD延长线上一点E作O的切线,切点为F若ACF=65°,则E= 14如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足PBC是等腰三角形的点P有且只有3个,则AB的长为 15将一副三角尺如图所示叠放在一起,则的值是 16已知图中RtABC,B=90°,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转 (0°< <360°),得到线段AC,连接DC,当DC/BC时,旋转角度 的值为_,17如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=_米18因式分解:_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,点A是直线AM与O的交点,点B在O上,BDAM,垂足为D,BD与O交于点C,OC平分AOB,B60°求证:AM是O的切线;若O的半径为4,求图中阴影部分的面积(结果保留和根号)20(6分)学校实施新课程改革以来,学生的学习能力有了很大提高王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2)请根据统计图解答下列问题:本次调查中,王老师一共调查了 名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率21(6分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90°,B=E=30°. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60°,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长22(8分)已知. (1)化简A;(2)如果a,b 是方程的两个根,求A的值23(8分)如图,点A,B,C都在抛物线y=ax22amx+am2+2m5(其中a0)上,ABx轴,ABC=135°,且AB=1(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);(2)求ABC的面积(用含a的代数式表示);(3)若ABC的面积为2,当2m5x2m2时,y的最大值为2,求m的值24(10分)中华文化,源远流长,在文学方面,西游记、三国演义、水浒传、红楼梦是我国古代长篇小说中的典型代表,被称为“四大古典名著”某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查了 名学生,扇形统计图中“1部”所在扇形的圆心角为 度,并补全条形统计图;(2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率25(10分)小明遇到这样一个问题:已知:. 求证:.经过思考,小明的证明过程如下:,.接下来,小明想:若把带入一元二次方程(a0),恰好得到.这说明一元二次方程有根,且一个根是.所以,根据一元二次方程根的判别式的知识易证:.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:. 求证:.请你参考上面的方法,写出小明所编题目的证明过程.26(12分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵经过统计,在整个过程中,每棵树苗的种植成本如图所示设种植A种树苗的工人为x名,种植B种树苗的工人为y名求y与x之间的函数关系式;设种植的总成本为w元,求w与x之间的函数关系式;若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率27(12分)某公司为了扩大经营,决定购进6台机器用于生产某活塞现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060 (1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】ABCD是菱形,BCD=120°,B=60°,BA=BCABC是等边三角形ABC的周长=3AB=1故选B2、C【解析】试题解析:原式=故选C.考点:二次根式的乘除法3、C【解析】解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°所以都是等边三角形所以 所以六边形的周长为3+1+4+2+2+3=15;故选C4、A【解析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案【详解】A、a2a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A【点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键5、D【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1【详解】点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,S1+S1=4+4-1×1=2故选D6、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数解答:解:将361 000 000用科学记数法表示为3.61×1故选C7、C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示的形式,所以将111111111134用科学记数法表示,故选C考点:科学记数法8、B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【详解】关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,-2+m=,解得,m=-1,故选B9、A【解析】解:,反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,点A(2,a)、B(3,b)在反比例函数的图象上,ab0,故选A10、B【解析】把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值【详解】解:若,是一元二次方程的两个不同实数根,故选B【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式11、D【解析】根据合并同类项法则,可知3a22a2= a2,故不正确;根据同底数幂相乘,可知a2a3=a5,故不正确;根据完全平方公式,可知(ab)2=a22ab+b2,故不正确;根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.故选D.【详解】请在此输入详解!12、C【解析】连接AE,OD,OEAB是直径, AEB=90°又BED=120°,AED=30°AOD=2AED=60°OA=ODAOD是等边三角形A=60°又点E为BC的中点,AED=90°,AB=ACABC是等边三角形,EDC是等边三角形,且边长是ABC边长的一半2,高是BOE=EOD=60°,和弦BE围成的部分的面积=和弦DE围成的部分的面积阴影部分的面积=故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、50°【解析】解:连接DF,连接AF交CE于G,EF为O的切线,OFE=90°,AB为直径,H为CD的中点ABCD,即BHE=90°,ACF=65°,AOF=130°,E=360°-BHE-OFE-AOF=50°,故答案为:50°.14、1【解析】试题分析:如图,当AB=AD时,满足PBC是等腰三角形的点P有且只有3个,P1BC,P2BC是等腰直角三角形,P3BC是等腰直角三角形(P3B=P3C),则AB=AD=1,故答案为1考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论15、【解析】试题分析:BAC=ACD=90°,ABCDABEDCE在RtACB中B=45°,AB=AC在RtACD中,D=30°,16、15或255°【解析】如下图,设直线DC与AB相交于点E,RtABC中,B=90°,AB=BC,DC/BC,AED=ABC=90°,ADE=ACB=BAC=45°,AB=AC,AE=AD,又AD=AB,AC=AC,AE=AB=AC=AC,C=30°,EAC=60°,CAC=60°-45°=15°, 即当DCBC时,旋转角=15°;同理,当DCBC时,旋转角=180°-45°-60°=255°;综上所述,当旋转角=15°或255°时,DC/BC.故答案为:15°或255°.17、20【解析】在RtABC中,直接利用tanACB=tan30°=即可.【详解】在RtABC中,tanACB=tan30°=,BC=60,解得AB=20.故答案为20.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.18、【解析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解【详解】解:原式,故答案为:【点睛】本题考查提公因式,熟练掌握运算法则是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)见解析;(2)【解析】(1)根据题意,可得BOC的等边三角形,进而可得BCOBOC,根据角平分线的性质,可证得BDOA,根据BDM90°,进而得到OAM90°,即可得证;(2)连接AC,利用AOC是等边三角形,求得OAC60°,可得CAD30°,在直角三角形中,求出CD、AD的长,则S阴影S梯形OADCS扇形OAC即可得解【详解】(1)证明:B60°,OBOC,BOC是等边三角形,1360°,OC平分AOB,12,23,OABD,BDM90°,OAM90°,又OA为O的半径,AM是O的切线(2)解:连接AC,360°,OAOC,AOC是等边三角形,OAC60°,CAD30°,OCAC4,CD2,AD2 ,S阴影S梯形OADCS扇形OAC ×(4+2)×2【点睛】本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算20、(1)20;(2)作图见试题解析;(3)【解析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)C类女生:20×25%2=3(名);D类男生:20×(115%50%25%)1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:21、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析】(1)由旋转可知:AC=DC,C=90°,B=DCE=30°,DAC=CDE=20°ADC是等边三角形DCA=20°DCA=CDE=20°DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90°,B =30°AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90°,DCM+BCN=180°-90°=90°,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20°,F1DBE,F1F1D=ABC=20°,BF1=DF1,F1BD=ABC=30°,F1DB=90°,F1DF1=ABC=20°,DF1F1是等边三角形,DF1=DF1,过点D作DGBC于G,BD=CD,ABC=20°,点D是角平分线上一点,DBC=DCB=×20°=30°,BG=BC=,BD=3CDF1=180°-BCD=180°-30°=150°,CDF1=320°-150°-20°=150°,CDF1=CDF1,在CDF1和CDF1中,CDF1CDF1(SAS),点F1也是所求的点,ABC=20°,点D是角平分线上一点,DEAB,DBC=BDE=ABD=×20°=30°,又BD=3,BE=×3÷cos30°=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或222、(1);(2)-. 【解析】(1)先通分,再根据同分母的分式相加减求出即可;(2)根据根与系数的关系即可得出结论【详解】(1)A=;(2)a,b 是方程的两个根,a+b=4,ab=12,【点睛】本题考查了分式的加减和根与系数的关系,能正确根据分式的运算法则进行化简是解答此题的关键23、(1)(m,2m2);(2)SABC =;(3)m的值为或10+2【解析】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由ABx轴且AB1,可得出点B的坐标为(m2,1a2m2),设BDt,则点C的坐标为(m2t,1a2m2t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出SABC的值;(3)由(2)的结论结合SABC2可求出a值,分三种情况考虑:当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;当2m2m2m2,即2m2时,xm时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值综上即可得出结论详解:(1)y=ax22amx+am2+2m2=a(xm)2+2m2,抛物线的顶点坐标为(m,2m2),故答案为(m,2m2);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,ABx轴,且AB=1,点B的坐标为(m+2,1a+2m2),ABC=132°,设BD=t,则CD=t,点C的坐标为(m+2+t,1a+2m2t),点C在抛物线y=a(xm)2+2m2上,1a+2m2t=a(2+t)2+2m2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=,SABC=ABCD=;(3)ABC的面积为2,=2,解得:a=,抛物线的解析式为y=(xm)2+2m2分三种情况考虑:当m2m2,即m2时,有(2m2m)2+2m2=2,整理,得:m211m+39=0,解得:m1=7(舍去),m2=7+(舍去);当2m2m2m2,即2m2时,有2m2=2,解得:m=;当m2m2,即m2时,有(2m2m)2+2m2=2,整理,得:m220m+60=0,解得:m3=102(舍去),m1=10+2综上所述:m的值为或10+2点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m2、2m2及m2三种情况考虑24、(1)40、126(2)240人(3) 【解析】(1)用2部的人数10除以2部人数所占的百分比25即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)用1600乘以4部所占的百分比即可;(3)根据树状图所得的结果,判断他们选中同一名著的概率【详解】(1)调查的总人数为:10÷25%=40,1部对应的人数为4021086=14,则扇形统计图中“1部”所在扇形的圆心角为:×360°=126°;故答案为40、126;(2)预估其中4部都读完了的学生有1600×=240人;(3)将西游记、三国演义、水浒传、红楼梦分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)=【点睛】本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.25、证明见解析【解析】解:,.是一元二次方程的根. ,.26、(1);(2);【解析】(1)先求出种植C种树苗的人数,根据现种植A、B、C三种树苗一共480棵,可以列出等量关系,解出y与x之间的关系;(2)分别求出种植A,B,C三种树苗的成本,然后相加即可;求出种植C种树苗工人的人数,然后用种植C种树苗工人的人数÷总人数即可求出概率【详解】解:(1)设种植A种树苗的工人为x名,种植B种树苗的工人为y名,则种植C种树苗的人数为(80-x-y)人,根据题意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,种植的总成本为5600元时,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即种植A种树苗的工人为10名,种植B种树苗的工人为50名,种植B种树苗的工人为:80-10-50=20名采访到种植C种树苗工人的概率为:=【点睛】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键27、(1)有3种购买方案购乙6台,购甲1台,购乙5台,购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,【解析】(1)设购买甲种机器x台(x0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数34万元就可以得到关于x的不等式,就可以求出x的范围(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数380件根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案【详解】解:(1)设购买甲种机器x台(x0),则购买乙种机器(6-x)台依题意,得7x+5(6-x)34解这个不等式,得x2,即x可取0,1,2三个值.该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)380解之得x> 由(1)得x2,即x2.x可取1,2俩值.即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元. 为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案