欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    上海市崇明县2023年高三第一次模拟考试数学试卷含解析.doc

    • 资源ID:87841710       资源大小:2.02MB        全文页数:19页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    上海市崇明县2023年高三第一次模拟考试数学试卷含解析.doc

    2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD2( )ABC1D3已知,若,则( )ABCD4已知命题,那么为( )ABCD5过抛物线C:y24x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MNl,则M到直线NF的距离为( )A BCD6已知双曲线的一条渐近线方程为,则双曲线的离心率为( )ABCD7若,则下列关系式正确的个数是( ) A1B2C3D48某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( )A小王或小李B小王C小董D小李9下列命题中,真命题的个数为( )命题“若,则”的否命题;命题“若,则或”;命题“若,则直线与直线平行”的逆命题.A0B1C2D310已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为( )ABCD11已知全集,集合,则=( )ABCD12已知函数,若,且 ,则的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列的各项均为正数,满足,若是等比数列,数列的通项公式_14(5分)国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是_15如图,已知,为的中点,为以为直径的圆上一动点,则的最小值是_16若函数为偶函数,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,已知直线的参数方程为(为参数),圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求和的极坐标方程;(2)过且倾斜角为的直线与交于点,与交于另一点,若,求的取值范围.18(12分)已知函数.(1)若函数的图象与轴有且只有一个公共点,求实数的取值范围;(2)若对任意成立,求实数的取值范围.19(12分)已知函数(,),且对任意,都有.()用含的表达式表示;()若存在两个极值点,且,求出的取值范围,并证明;()在()的条件下,判断零点的个数,并说明理由.20(12分) 选修4-5:不等式选讲设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.21(12分)设函数 .(I)求的最小正周期;(II)若且,求的值.22(10分)如图,在三棱柱中,、分别是、的中点.(1)证明:平面;(2)若底面是正三角形,在底面的投影为,求到平面的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题2、A【解析】利用复数的乘方和除法法则将复数化为一般形式,结合复数的模长公式可求得结果.【详解】,因此,.故选:A.【点睛】本题考查复数模长的计算,同时也考查了复数的乘方和除法法则的应用,考查计算能力,属于基础题.3、B【解析】由平行求出参数,再由数量积的坐标运算计算【详解】由,得,则,所以故选:B【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键4、B【解析】利用特称命题的否定分析解答得解.【详解】已知命题,那么是.故选:【点睛】本题主要考查特称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.5、C【解析】联立方程解得M(3,),根据MNl得|MN|MF|4,得到MNF是边长为4的等边三角形,计算距离得到答案.【详解】依题意得F(1,0),则直线FM的方程是y(x1)由得x或x3.由M在x轴的上方得M(3,),由MNl得|MN|MF|314又NMF等于直线FM的倾斜角,即NMF60°,因此MNF是边长为4的等边三角形点M到直线NF的距离为故选:C.【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.6、B【解析】由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.7、D【解析】a,b可看成是与和交点的横坐标,画出图象,数形结合处理.【详解】令,作出图象如图,由,的图象可知,正确;,有,正确;,有,正确;,有,正确.故选:D.【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.8、D【解析】根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【点睛】本题考查推理证明的实际应用.9、C【解析】否命题与逆命题是等价命题,写出的逆命题,举反例排除;原命题与逆否命题是等价命题,写出的逆否命题后,利用指数函数单调性验证正确;写出的逆命题判,利用两直线平行的条件容易判断正确.【详解】的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;的逆否命题为“若且,则”,该命题为真命题,故为真命题;的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【点睛】本题考查判断命题真假. 判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;判定“若,则”是假命题,只需举一反例即可10、A【解析】点的坐标为,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,所以双曲线的方程为故选:【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.11、D【解析】先计算集合,再计算,最后计算【详解】解:,故选:【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题12、A【解析】分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数的图象,如图所示,若,且,则当时,得,即,则满足,则,即,则,设,则,当,解得,当,解得,当时,函数取得最小值,当时,;当时,所以,即的取值范围是,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用递推关系,等比数列的通项公式即可求得结果.【详解】因为,所以,因为是等比数列,所以数列的公比为1又,所以当时,有这说明在已知条件下,可以得到唯一的等比数列,所以,故答案为:.【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据递推公式求数列的通项公式,属于简单题目.14、2【解析】由这五位同学答对的题数分别是,得该组数据的平均数,则方差15、【解析】建立合适的直角坐标系,求出相关点的坐标,进而可得的坐标表示,利用平面向量数量积的坐标表示求出的表达式,求出其最小值即可.【详解】建立直角坐标系如图所示:则点,设点,所以,由平面向量数量积的坐标表示可得,其中, 因为,所以的最小值为.故答案为:【点睛】本题考查平面向量数量积的坐标表示和利用辅助角公式求最值;考查数形结合思想和转化与化归能力、运算求解能力;建立直角坐标系,把表示为关于角的三角函数,利用辅助角公式求最值是求解本题的关键;属于中档题.16、【解析】二次函数为偶函数说明一次项系数为0,求得参数,将代入表达式即可求解【详解】由为偶函数,知其一次项的系数为0,所以,所以,故答案为:-5【点睛】本题考查由奇偶性求解参数,求函数值,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)直接利用转换公式,把参数方程,直角坐标方程与极坐标方程进行转化;(2)利用极坐标方程将转化为三角函数求解即可.【详解】(1)因为,所以的普通方程为,又,的极坐标方程为,的方程即为,对应极坐标方程为.(2)由己知设,则,所以,又,当,即时,取得最小值;当,即时,取得最大值.所以,的取值范围为.【点睛】本题主要考查了直角坐标方程,参数方程与极坐标方程的互化,三角函数的值域求解等知识,考查了学生的运算求解能力.18、(1)(2)【解析】(1)求出及其导函数,利用研究的单调性和最值,根据零点存在定理和零点定义可得的范围(2)令,题意说明时,恒成立.同样求出导函数,由研究的单调性,通过分类讨论可得的单调性得出结论【详解】解(1)函数所以讨论:当时,无零点;当时,所以在上单调递增.取,则又,所以,此时函数有且只有一个零点;当时,令,解得(舍)或当时,所以在上单调递减;当时,所以在上单调递增.据题意,得,所以(舍)或综上,所求实数的取值范围为.(2)令,根据题意知,当时,恒成立.又讨论:若,则当时,恒成立,所以在上是增函数.又函数在上单调递增,在上单调递增,所以存在使,不符合题意.若,则当时,恒成立,所以在上是增函数,据求解知,不符合题意.若,则当时,恒有,故在上是减函数,于是“对任意成立”的充分条件是“”,即,解得,故综上,所求实数的取值范围是.【点睛】本题考查函数零点问题,考查不等式恒成立问题,考查用导数研究函数的单调性解题关键是通过分类讨论研究函数的单调性本题难度较大,考查掌握转化与化归思想,考查学生分析问题解决问题的能力19、(1)(2)见解析(3)见解析【解析】试题分析:利用赋值法求出关系,求函数导数,要求函数有两个极值点,只需在内有两个实根,利用一元二次方程的根的分布求出的取值范围,再根据函数图象和极值的大小判断零点的个数.试题解析:()根据题意:令,可得, 所以,经验证,可得当时,对任意,都有,所以.()由()可知,且,所以 , 令,要使存在两个极值点,则须有有两个不相等的正数根,所以 或 解得或无解,所以的取值范围,可得,由题意知 ,令 ,则 而当时, ,即,所以在上单调递减,所以 即时,()因为 ,令得,由()知时,的对称轴,所以.又,可得,此时,在上单调递减,上单调递增,上单调递减,所以 最多只有三个不同的零点又因为,所以在上递增,即时,恒成立根据(2)可知且,所以,即,所以,使得由,得,又,所以恰有三个不同的零点:,1,综上所述,恰有三个不同的零点【点睛】利用赋值法求出关系,利用函数导数,研究函数的单调性,要求函数有两个极值点,只需在内有两个实根,利用一元二次方程的根的分布求出的取值范围,利用函数的导数研究函数的单调性、极值,再根据函数图象和极值的大小判断零点的个数是近年高考压轴题的热点.20、 (1) (2) 【解析】(1)零点分段去绝对值解不等式即可(2)由题在上有解,去绝对值分离变量a即可.【详解】(1)不等式,即等价于 或或 解得 ,所以原不等式的解集为; (2)当时,不等式,即,所以在上有解 即在上有解, 所以,【点睛】本题考查绝对值不等式解法,不等式有解求参数,熟记零点分段,熟练处理不等式有解问题是关键,是中档题.21、 (I);(II)【解析】(I)化简得到,得到周期.(II) ,故,根据范围判断,代入计算得到答案.【详解】(I) ,故.(II) ,故,故,故,故,.【点睛】本题考查了三角函数的周期,三角恒等变换,意在考查学生的计算能力和综合应用能力.22、(1)证明见解析;(2).【解析】(1)连接,连接、交于点,并连接,则点为的中点,利用中位线的性质得出,利用空间平行线的传递性可得出,然后利用线面平行的判定定理可证得结论;(2)推导出平面,并计算出,由此可得出到平面的距离为,即可得解.【详解】(1)连接,连接、交于点,并连接,则点为的中点,、分别为、的中点,则,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影为,平面,平面,为正三角形,且为的中点,平面,且,因此,到平面的距离为.【点睛】本题考查线面平行的证明,同时也考查了点到平面距离的计算,考查推理能力与计算能力,属于中等题.

    注意事项

    本文(上海市崇明县2023年高三第一次模拟考试数学试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开