内蒙古呼伦贝尔市尼尔基第二中学2023年中考二模数学试题含解析.doc
-
资源ID:87845972
资源大小:531KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
内蒙古呼伦贝尔市尼尔基第二中学2023年中考二模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC绕点A顺时针旋转45°得到ABC,若BAC90°,ABAC,则图中阴影部分的面积等于( )A2B1CDl2函数的自变量x的取值范围是( )ABCD3若是新规定的某种运算符号,设ab=b 2 -a,则-2x=6中x的值()A4B8C2D-24如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )ABCD5衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A=10B=10C=10D +=106下列几何体中三视图完全相同的是()ABCD7如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )A着B沉C应D冷8如图,已知ABAD,那么添加下列一个条件后,仍无法判定ABCADC的是( )ACBCDBBCADCACBACDACDBD90°9小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )ABCD10下列运算结果正确的是()A3aa=2 B(ab)2=a2b2Ca(a+b)=a2+b D6ab2÷2ab=3b二、填空题(共7小题,每小题3分,满分21分)11已知(x+y)225,(xy)29,则x2+y2_12如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是_结果保留13函数的自变量的取值范围是14如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点若AC=,AEO=120°,则FC的长度为_15不等式组的解集是 _.16算术平方根等于本身的实数是_.17安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:互相关心;互相提醒;不要相互嬉水;相互比潜水深度;选择水流湍急的水域;选择有人看护的游泳池小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_三、解答题(共7小题,满分69分)18(10分)计算:()2+(2)0+|2|19(5分)如图,四边形ABCD中,C90°,ADDB,点E为AB的中点,DEBC.(1)求证:BD平分ABC;(2)连接EC,若A30°,DC,求EC的长.20(8分)如图所示,ACB和ECD都是等腰直角三角形,ACBECD90°,D为AB边上一点求证:ACEBCD;若AD5,BD12,求DE的长21(10分)解方程(2x+1)2=3(2x+1)22(10分)如图,在RtABC中,C=90°,A=30°,AB=8,点P从点A出发,沿折线ABBC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止设点P运动的时间为t秒(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与ABC的一边垂直时t的值;(3)设APQ的面积为S,求S与t的函数关系式;(4)当APQ是以PQ为腰的等腰三角形时,直接写出t的值23(12分)如图,在平面直角坐标系xOy中,函数的图象与直线y2x+1交于点A(1,m).(1)求k、m的值;(2)已知点P(n,0)(n1),过点P作平行于y轴的直线,交直线y2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.当n3时,求线段AB上的整点个数;若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.24(14分)如图,在ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】ABC绕点A顺时针旋转45°得到ABC,BAC=90°,AB=AC=,BC=2,C=B=CAC=C=45°,AC=AC=,ADBC,BCAB,AD=BC=1,AF=FC=AC=1,DC=AC-AD=-1,图中阴影部分的面积等于:SAFC-SDEC=×1×1-×( -1)2=-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC的长是解题关键2、D【解析】根据二次根式的意义,被开方数是非负数【详解】根据题意得,解得故选D【点睛】本题考查了函数自变量的取值范围的确定和分式的意义函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数3、C【解析】解:由题意得:,x=±1故选C4、B【解析】根据图示,可得:b0a,|b|a|,据此判断即可【详解】b0a,|b|a|,a+b0,|a+b|= -a-b故选B【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握5、A【解析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:.故选:.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.6、A【解析】找到从物体正面、左面和上面看得到的图形全等的几何体即可【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体7、A【解析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对故选:A【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键8、B【解析】由图形可知ACAC,结合全等三角形的判定方法逐项判断即可.【详解】解:在ABC和ADC中ABAD,ACAC,当CBCD时,满足SSS,可证明ABCACD,故A可以;当BCADCA时,满足SSA,不能证明ABCACD,故B不可以;当BACDAC时,满足SAS,可证明ABCACD,故C可以;当BD90°时,满足HL,可证明ABCACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.9、B【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可详解:画树状图,得共有8种情况,经过每个路口都是绿灯的有一种,实际这样的机会是.故选B点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形用到的知识点为:概率=所求情况数与总情况数之比10、D【解析】各项计算得到结果,即可作出判断【详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键二、填空题(共7小题,每小题3分,满分21分)11、17【解析】先利用完全平方公式展开,然后再求和.【详解】根据(x+y)2=25,x2+y2+2xy=25;(xy)2=9, x2+y2-2xy=9,所以x2+y2=17.【点睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等价变形:,.12、【解析】直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案【详解】由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6故答案为6【点睛】本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键13、x1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X10,即x1那么函数y=的自变量的取值范围是x114、1【解析】先根据矩形的性质,推理得到OF=CF,再根据RtBOF求得OF的长,即可得到CF的长【详解】解:EFBD,AEO=120°,EDO=30°,DEO=60°,四边形ABCD是矩形,OBF=OCF=30°,BFO=60°,FOC=60°-30°=30°,OF=CF,又RtBOF中,BO=BD=AC=,OF=tan30°×BO=1,CF=1,故答案为:1【点睛】本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分15、x1【解析】解不等式得:x<5,解不等式得:x<-1所以不等式组的解集是x<-1.故答案是:x<-1.16、0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身17、【解析】根据事件的描述可得到描述正确的有,即可得到答案.【详解】共有6张纸条,其中正确的有互相关心;互相提醒;不要相互嬉水;选择有人看护的游泳池,共4张,抽到内容描述正确的纸条的概率是, 故答案为:【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.三、解答题(共7小题,满分69分)18、2【解析】直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案【详解】解:原式43+1+222【点睛】本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点19、(1)见解析;(2).【解析】(1)直接利用直角三角形的性质得出,再利用DEBC,得出23,进而得出答案;(2)利用已知得出在RtBCD中,360°,得出DB的长,进而得出EC的长.【详解】(1)证明:ADDB,点E为AB的中点,.12.DEBC,23.13.BD平分ABC.(2)解:ADDB,A30°,160°.3260°.BCD90°,430°.CDE2+490°.在RtBCD中,360°,DB2.DEBE,160°,DEDB2.【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.20、(1)证明见解析(2)13【解析】(1)先根据同角的余角相等得到ACE=BCD,再结合等腰直角三角形的性质即可证得结论;(2)根据全等三角形的性质可得AE=BD,EAC=B=45°,即可证得AED是直角三角形,再利用勾股定理即可求出DE的长【详解】(1)ACB和ECD都是等腰直角三角形AC=BC,EC=DC,ACB=ECD=90°ACE=DCE-DCA,BCD=ACB-DCAACE=BCDACEBCD(SAS);(2)ACB和ECD都是等腰直角三角形BAC=B=45°ACEBCDAE=BD=12,EAC=B=45°EAD=EAC+BAC=90°,EAD是直角三角形【点睛】解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.21、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+13)=0,推出方程2x+1=0,2x+13=0,求出方程的解即可试题解析:解:整理得:(2x+1)23(2x+1)=0,分解因式得:(2x+1)(2x+13)=0,即2x+1=0,2x+13=0,解得:x1=,x2=1点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大22、(1)4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或【解析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC;当PQAB时;当PQAC时;分别求解即可;(3)当P在AB边上时,即0t1,作PGAC于G,或当P在边BC上时,即1t3,分别根据三角形的面积求函数的解析式即可;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,作PGAC于G,则AG=GQ,列方程求解;当P在边AC上时, AQ=PQ,根据勾股定理求解.详解:(1)如图1,RtABC中,A=30°,AB=8,BC=AB=4,AC=,由题意得:CQ=t,AQ=4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC,此时t=0;当PQAB时,如图2,AQ=4t,AP=8t,A=30°,cos30°=,t=;当PQAC时,如图3,AQ=4t,AP=8t,A=30°,cos30°=,t=;综上所述,当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)分两种情况:当P在AB边上时,即0t1,如图4,作PGAC于G,A=30°,AP=8t,AGP=90°,PG=4t,SAPQ=AQPG=(4t)4t=2t2+8t;当P在边BC上时,即1t3,如图5,由题意得:PB=2(t1),PC=42(t1)=2t+6,SAPQ=AQPC=(4t)(2t+6)=t2;综上所述,S与t的函数关系式为:S=;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,如图6,AP=PQ,作PGAC于G,则AG=GQ,A=30°,AP=8t,AGP=90°,PG=4t,AG=4t,由AQ=2AG得:4t=8t,t=,当P在边AC上时,如图7,AQ=PQ,RtPCQ中,由勾股定理得:CQ2+CP2=PQ2,t=或(舍),综上所述,t的值为或点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.23、(1)m3,k3;(2)线段AB上有(1,3)、(2,5)、(3,7)共3个整点,当2n3时,有五个整点.【解析】(1)将A点代入直线解析式可求m,再代入,可求k.(2)根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1x3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.根据图象可以直接判断2n3.【详解】(1)点A(1,m)在y2x+1上,m2×1+13.A(1,3).点A(1,3)在函数的图象上,k3.(2)当n3时,B、C两点的坐标为B(3,7)、C(3,1).整点在线段AB上1x3且x为整数x1,2,3当x1时,y3,当x2时,y5,当x3时,y7,线段AB上有(1,3)、(2,5)、(3,7)共3个整点.由图象可得当2n3时,有五个整点.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.24、 (1)见解析;(1)1【解析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为ABD的中位线可得【详解】(1)如图,射线CF即为所求;(1)CAD=CDA,AC=DC,即CAD为等腰三角形;又CF是顶角ACD的平分线,CF是底边AD的中线,即F为AD的中点,E是AB的中点,EF为ABD的中位线,EF=BD=1【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键