内蒙古包头市稀土高新区二中2022-2023学年高三下学期第五次调研考试数学试题含解析.doc
-
资源ID:87845977
资源大小:1.48MB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
内蒙古包头市稀土高新区二中2022-2023学年高三下学期第五次调研考试数学试题含解析.doc
2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数为奇函数,则( )AB1C2D32已知各项都为正的等差数列中,若,成等比数列,则( )ABCD3已知为虚数单位,复数满足,则复数在复平面内对应的点在( )A第一象限B第二象限C第三象限D第四象限4若复数()在复平面内的对应点在直线上,则等于( )ABCD5已知点P在椭圆:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆的另一个交点为B,若PAPB,则椭圆的离心率e=( )ABCD6已知奇函数是上的减函数,若满足不等式组,则的最小值为( )A-4B-2C0D47如图,矩形ABCD中,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:对满足题意的任意的的位置,;对满足题意的任意的的位置,则( ) A命题和命题都成立B命题和命题都不成立C命题成立,命题不成立D命题不成立,命题成立8公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米.所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为( )A米B米C米D米9函数的图象大致是()ABCD10已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )ABCD11已知复数满足,则的共轭复数是( )ABCD12已知实数,满足,则的最大值等于( )A2BC4D8二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_14若x,y满足,且y1,则3x+y的最大值_15现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有_种.(用数字作答)16已知函数,若,则的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在多面体中,四边形是菱形,平面,是的中点.()求证:平面平面;()求直线与平面所成的角的正弦值.18(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.19(12分)已知向量,函数(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值20(12分)若关于的方程的两根都大于2,求实数的取值范围21(12分)随着科技的发展,网络已逐渐融入了人们的生活网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差参考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822(10分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.2、A【解析】试题分析:设公差为或(舍),故选A.考点:等差数列及其性质.3、B【解析】求出复数,得出其对应点的坐标,确定所在象限【详解】由题意,对应点坐标为 ,在第二象限故选:B【点睛】本题考查复数的几何意义,考查复数的除法运算,属于基础题4、C【解析】由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以,所以,故选:C.【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.5、C【解析】设,则,设,根据化简得到,得到答案.【详解】设,则,则,设,则,两式相减得到:,即, ,故,即,故,故.故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.6、B【解析】根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】奇函数是上的减函数,则,且,画出可行域和目标函数,即,表示直线与轴截距的相反数,根据平移得到:当直线过点,即时,有最小值为.故选:.【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.7、A【解析】作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】如图所示,过作平面,垂足为,连接,作,连接.由图可知,所以,所以正确.由于,所以与所成角,所以,所以正确.综上所述,都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题8、D【解析】根据题意,是一个等比数列模型,设,由,解得,再求和.【详解】根据题意,这是一个等比数列模型,设,所以,解得,所以 .故选:D【点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.9、C【解析】根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】,函数为奇函数,排除选项A,B;又当时,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.10、D【解析】设双曲线的左焦点为,连接,设,则,和中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为,连接,设,则,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.11、B【解析】根据复数的除法运算法则和共轭复数的定义直接求解即可.【详解】由,得,所以故选:B【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.12、D【解析】画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.【详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D【点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2.【解析】由双曲线的一条渐近线为,解得求出双曲线的右焦点,利用点到直线的距离公式求解即可【详解】双曲线的一条渐近线为 解得: 双曲线的右焦点为焦点到这条渐近线的距离为:本题正确结果:【点睛】本题考查了双曲线和的标准方程及其性质,涉及到点到直线距离公式的考查,属于基础题14、5.【解析】由约束条件作出可行域,令z3x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】由题意作出可行域如图阴影部分所示. 设,当直线经过点时,取最大值5.故答案为:5【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题15、36【解析】先优先考虑甲、乙两人不相邻的排法,在此条件下,计算甲不排在两端的排法,最后相减即可得到结果.【详解】由题意得5人排成一排,甲、乙两人不相邻,有种排法,其中甲排在两端,有种排法,则6人排成一排,甲、乙两人不相邻,且甲不排在两端,共有(种)排法.所以本题答案为36.【点睛】排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻、考虑周全,这样才能做到不重不漏,正确解题.16、【解析】根据分段函数的性质,即可求出的取值范围.【详解】当时, ,当时,所以,故的取值范围是.故答案为:.【点睛】本题考查分段函数的性质,已知分段函数解析式求参数范围,还涉及对数和指数的运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 ()详见解析;()【解析】试题分析:()连接交于,得,所以面,又 ,得面,即可利用面面平行的判定定理,证得结论;()如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量 ,利用向量和向量夹角公式,即可求解与平面所成角的正弦值试题解析:()连接BD交AC于O,易知O是BD的中点,故OG/BE,BE面BEF,OG在面BEF外,所以OG/面BEF;又EF/AC,AC在面BEF外,AC/面BEF,又AC与OG相交于点O,面ACG有两条相交直线与面BEF平行,故面ACG面BEF;()如图,以O为坐标原点,分别以OC、OD、OF为x、y、z轴建立空间直角坐标系,则, , , ,设面ABF的法向量为,依题意有,令,直线AD与面ABF成的角的正弦值是 18、(1)(2)存在;详见解析【解析】(1)由椭圆的性质得,解得后可得,从而得椭圆方程;(2)设,当直线斜率存在时,设为,代入椭圆方程,整理后应用韦达定理得,代入0由恒成立问题可求得验证斜率不存在时也适合即得【详解】解:(1)由题易知解得,所以椭圆方程为(2)设当直线斜率存在时,设为与椭圆方程联立得,显然所以因为化简解得即所以此时存在定点满足题意当直线斜率不存在时,显然也满足综上所述,存在定点,使成立【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法19、(1),(2)【解析】(1)利用向量的数量积和二倍角公式化简得,故可求其周期与单调性;(2)根据图像过得到,故可求得的大小,再根据数量积得到的乘积,最后结合余弦定理和构建关于的方程即可【详解】(1),最小正周期:,由得,所以的单调递增区间为;(2)由可得:,所以又因为成等差数列,所以而,20、【解析】先令,根据题中条件得到,求解,即可得出结果.【详解】因为关于的方程的两根都大于2,令所以有,解得,所以.【点睛】本题主要考查一元二次方程根的分布问题,熟记二次函数的特征即可,属于常考题型.21、()详见解析;();数学期望为6,方差为2.4.【解析】(1)完成列联表,由列联表,得,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关(2) 由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,由此能选取的3人中至少有2人经常网购的概率 由列联表可知,抽到经常网购的市民的频率为:,由题意,由此能求出随机变量的数学期望和方差【详解】解:(1)完成列联表(单位:人):经常网购偶尔或不用网购合计男性5050100女性7030100合计12080200由列联表,得:,能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关(2)由题意所抽取的10名女市民中,经常网购的有人,偶尔或不用网购的有人,选取的3人中至少有2人经常网购的概率为: 由列联表可知,抽到经常网购的市民的频率为:,将频率视为概率,从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6,由题意,随机变量的数学期望,方差D(X)=【点睛】本题考查独立检验的应用,考查概率、离散型随机变量的分布列、数学期望、方差的求法,考查古典概型、二项分布等基础知识,考查运算求解能力,是中档题22、(1)答案见解析(2)答案见解析【解析】(1)利用复合函数求导求出,利用导数与函数单调性之间的关系即可求解. (2)首先证,令,求导可得单调递增,由即可证出;再令,再利用导数可得单调递增,由即可证出.【详解】(1)显然时,故在单调递减(2)首先证,令,则单调递增,且,所以再令,所以单调递增,即,【点睛】本题考查了利用导数研究函数的单调性、利用导数证明不等式,解题的关键掌握复合函数求导,属于难题.