内蒙古达标名校2023年中考数学最后一模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知函数y=的图象如图,当x1时,y的取值范围是()Ay1By1Cy1或y0Dy1或y02如图,在平行四边形ABCD中,ABC的平分线BF交AD于点F,FEAB若AB=5,AD=7,BF=6,则四边形ABEF的面积为()A48B35C30D243如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示cos的值,错误的是( )ABCD4如图,A、B、C、D四个点均在O上,AOD=50°,AODC,则B的度数为()A50° B55° C60° D65°5已知圆锥的侧面积为10cm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()A100cmBcmC10cmDcm6方程的解是( )ABCD7一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是()A13B14C15D168如图,把一块直角三角板的直角顶点放在直尺的一边上,若1=50°,则2的度数为( )A50°B40°C30°D25°9已知:如图是yax2+2x1的图象,那么ax2+2x10的根可能是下列哪幅图中抛物线与直线的交点横坐标()ABCD10如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,如此继续下去,结果如下表:则an_(用含n的代数式表示)所剪次数1234n正三角形个数471013an12已知=32°,则的余角是_°13如图,AC是以AB为直径的O的弦,点D是O上的一点,过点D作O的切线交直线AC于点E,AD平分BAE,若AB=10,DE=3,则AE的长为_14如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为_.15如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP/AB,则AB的长等于_16分式方程的解是 17如图,AB,AC分别为O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_三、解答题(共7小题,满分69分)18(10分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?19(5分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)120130180每天销量y(kg)1009570设y与x的关系是我们所学过的某一种函数关系(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?20(8分)如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出时,的取值范围;(3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由21(10分)在ABC中,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图,连接AD,若,求B的大小;如图,若点F为的中点,的半径为2,求AB的长 22(10分)某商店经营儿童益智玩具,已知成批购进时的单价是20元调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元求y与x的函数关系式并直接写出自变量x的取值范围每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?23(12分)如图,已知A(3,0),B(0,1),连接AB,过B点作AB的垂线段BC,使BABC,连接AC如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角BPQ,连接CQ,当点P在线段OA上,求证:PACQ;在(2)的条件下若C、P,Q三点共线,求此时APB的度数及P点坐标24(14分)先化简,再求值:( +)÷,其中x=参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:根据反比例函数的性质,再结合函数的图象即可解答本题解:根据反比例函数的性质和图象显示可知:此函数为减函数,x-1时,在第三象限内y的取值范围是y-1;在第一象限内y的取值范围是y1故选C考点:本题考查了反比例函数的性质点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要注意分析反比例函数的基本性质和知识,反比例函数y=的图象是双曲线,当k1时,图象在一、三象限,在每个象限内y随x的增大而减小;当k1时,图象在二、四象限,在每个象限内,y随x的增大而增大2、D【解析】分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积详解:ABEF,AFBE, 四边形ABEF为平行四边形, BF平分ABC,四边形ABEF为菱形, 连接AE交BF于点O, BF=6,BE=5,BO=3,EO=4,AE=8,则四边形ABEF的面积=6×8÷2=24,故选D点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型解决本题的关键就是根据题意得出四边形为菱形3、D【解析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案【详解】cos=.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.4、D【解析】试题分析:连接OC,根据平行可得:ODC=AOD=50°,则DOC=80°,则AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:B=130°÷2=65°.考点:圆的基本性质5、C【解析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长【详解】设母线长为R,则圆锥的侧面积=10,R=10cm,故选C【点睛】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.6、D【解析】按照解分式方程的步骤进行计算,注意结果要检验.【详解】解:经检验x=4是原方程的解故选:D【点睛】本题考查解分式方程,注意结果要检验.7、C【解析】解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°所以都是等边三角形所以 所以六边形的周长为3+1+4+2+2+3=15;故选C8、B【解析】解:如图,由两直线平行,同位角相等,可求得3=1=50°,根据平角为180°可得,2=90°50°=40°故选B【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键9、C【解析】由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;C、抛物线y=ax2与直线y=2x+1的交点,即交点的横坐标为方程ax2+2x1=0的根,C符合题意此题得解【详解】抛物线y=ax2+2x1与x轴的交点位于y轴的两端,A、D选项不符合题意;B、方程ax2+2x1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B选项不符合题意;C、图中交点的横坐标为方程ax2+2x1=0的根(抛物线y=ax2与直线y=2x+1的交点),C选项符合题意故选:C【点睛】本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键10、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O×,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、3n+1【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形即剪n次时,共有4+3(n-1)=3n+1试题解析:故剪n次时,共有4+3(n-1)=3n+1考点:规律型:图形的变化类12、58°【解析】根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角即其中一个角是另一个角的余角可得答案【详解】解:的余角是:90°-32°=58°故答案为58°【点睛】本题考查余角,解题关键是掌握互为余角的两个角的和为90度13、1或9【解析】(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示ODOA,OADODA,AD平分BAE,OADODADAC,OD/AE,DE是圆的切线,DEOD,ODE=E=90o,四边形ODEF是矩形,OFDE,EFOD5,又OFAC,AF,AEAF+EF5+49.(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示同(1)可得:EFOD5,OFDE3,在直角三角形AOF中,AF,AEEFAF541.14、【解析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度圆柱底面的周长为4dm,圆柱高为2dm,AB=2dm,BC=BC=2dm,AC2=22+22=8,AC=2dm这圈金属丝的周长最小为2AC=4dm故答案为:4dm【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键15、 【解析】设CD=AB=a,利用勾股定理可得到RtCDE中,DE2=CE2-CD2=1-2a2,RtDEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据DEPDAB,即可得到,即,可得,即可得到AB的长等于【详解】如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,由折叠可得,CE=BC,BP=EP,CE2=1-a2,RtCDE中,DE2=CE2-CD2=1-2a2,PEAB,A=90°,PED=90°,RtDEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,PE=a2,PEAB,DEPDAB,即,即a2+a-1=0,解得(舍去),AB的长等于AB=.故答案为.16、x=1【解析】试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解试题解析:去分母得:x=2x1+2,解得:x=1,经检验x=1是分式方程的解考点:解分式方程17、12【解析】连接AO,BO,CO,如图所示:AB、AC分别为O的内接正六边形、内接正方形的一边,AOB=60°,AOC=90°,BOC=30°,n=12,故答案为12.三、解答题(共7小题,满分69分)18、 (1)y=2t+200(1t80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件【解析】(1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;(2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时t的值,结合函数图象即可得出答案;【详解】(1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得: ,解得:,y=2t+200(1t80,t为整数); (2)设日销售利润为w,则w=(p6)y,当1t80时,w=(t+166)(2t+200)=(t30)2+2450, 当t=30时,w最大=2450;第30天的日销售利润最大,最大利润为2450元 (3)由(2)得:当1t80时,w=(t30)2+2450,令w=2400,即 (t30)2+2450=2400,解得:t1=20、t2=40,t的取值范围是20t40,共有21天符合条件【点睛】本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键19、 (1)y=0.5x+160,120x180;(2)当销售单价为180元时,销售利润最大,最大利润是7000元【解析】试题分析:(1)首先由表格可知:销售单价没涨10元,就少销售5kg,即可得y与x是一次函数关系,则可求得答案;(2)首先设销售利润为w元,根据题意可得二次函数,然后求最值即可试题解析:(1)由表格可知:销售单价没涨10元,就少销售5kg,y与x是一次函数关系,y与x的函数关系式为:y=1000.5(x120)=0.5x+160,销售单价不低于120元/kg且不高于180元/kg,自变量x的取值范围为:120x180;(2)设销售利润为w元,则w=(x80)(0.5x+160)=,a=0,当x200时,y随x的增大而增大,当x=180时,销售利润最大,最大利润是:w=7000(元)答:当销售单价为180元时,销售利润最大,最大利润是7000元20、(1); ;(2)或;(3)存在,或或或【解析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分、三种情况讨论,即可得出结论【详解】(1)一次函数与反比例函数,相交于点,把代入得:,反比例函数解析式为,把代入得:,点C的坐标为,把,代入得:,解得:,一次函数解析式为;(2)根据函数图像可知:当或时,一次函数的图象在反比例函数图象的上方,当或时,;(3)存在或或或时,为等腰三角形,理由如下:过作轴,交轴于,直线与轴交于点,令得,点A的坐标为,点B的坐标为,点D的坐标为,当时,则,点P的坐标为:、;当时,是等腰三角形,平分,点D的坐标为,点P的坐标为,即;当时,如图:设,则,在中,由勾股定理得:,解得:,点P的坐标为,即,综上所述,当或或或时,为等腰三角形【点睛】本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论21、 (1)B=40°;(2)AB= 6.【解析】(1)连接OD,由在ABC中, C=90°,BC是切线,易得ACOD ,即可求得CAD=ADO ,继而求得答案; (2)首先连接OF,OD,由ACOD得OFA=FOD ,由点F为弧AD的中点,易得AOF是等边三角形,继而求得答案.【详解】解:(1)如解图,连接OD,BC切O于点D,ODB=90°,C=90°,ACOD,CAD=ADO,OA=OD,DAO=ADO=CAD=25°,DOB=CAO=CADDAO=50°,ODB=90°,B=90°DOB=90°50°=40°(2)如解图,连接OF,OD,ACOD,OFA=FOD,点F为弧AD的中点,AOF=FOD,OFA=AOF,AF=OA,OA=OF,AOF为等边三角形,FAO=60°,则DOB=60°,B=30°,在RtODB中,OD=2,OB=4,AB=AOOB=24=6.【点睛】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明AOF为等边三角形是解(2)的关键.22、(1)y10x2+130x+2300,0x10且x为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式(2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可(3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0x10且x为正整数,分别计算出当x=6和x=7时y的值即可【详解】(1)根据题意得:y(30+x20)(23010x)10x2+130x+2300,自变量x的取值范围是:0x10且x为正整数;(2)当y2520时,得10x2+130x+23002520,解得x12,x211(不合题意,舍去) 当x2时,30+x32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元(3)根据题意得:y10x2+130x+230010(x6.5)2+2722.5,a100,当x6.5时,y有最大值为2722.5,0x10且x为正整数,当x6时,30+x36,y2720(元),当x7时,30+x37,y2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程23、(1)C(1,-4)(2)证明见解析;(3)APB=135°,P(1,0)【解析】(1)作CHy轴于H,证明ABOBCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明PBAQBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到BQC=135°,根据全等三角形的性质得到BPA=BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标【详解】(1)作CHy轴于H,则BCH+CBH=90°,ABBC,ABO+CBH=90°,ABO=BCH,在ABO和BCH中,ABOBCH,BH=OA=3,CH=OB=1,OH=OB+BH=4,C点坐标为(1,4);(2)PBQ=ABC=90°,PBQABQ=ABCABQ,即PBA=QBC,在PBA和QBC中,PBAQBC,PA=CQ;(3)BPQ是等腰直角三角形,BQP=45°,当C、P,Q三点共线时,BQC=135°,由(2)可知,PBAQBC,BPA=BQC=135°,OPB=45°,OP=OB=1,P点坐标为(1,0)【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键24、-【解析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可【详解】原式= +÷=-+÷=·=,当x=时,原式=-【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键