欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    内蒙古一机集团第一中学2023届高三六校第一次联考数学试卷含解析.doc

    • 资源ID:87846150       资源大小:1.73MB        全文页数:17页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    内蒙古一机集团第一中学2023届高三六校第一次联考数学试卷含解析.doc

    2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的部分图象大致是( )ABCD2若复数满足(为虚数单位),则其共轭复数的虚部为( )ABCD32019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则( )A170B10C172D124设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为( )AB2CD5若集合,则( )ABCD6过直线上一点作圆的两条切线,为切点,当直线,关于直线对称时,( )ABCD7已知复数(为虚数单位)在复平面内对应的点的坐标是( )ABCD8已知函数的零点为m,若存在实数n使且,则实数a的取值范围是( )ABCD9已知数列,是首项为8,公比为得等比数列,则等于( )A64B32C2D410当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是( )ABCD11已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,抛物线的准线交轴于点,若,则直线的斜率为A1BCD12若为虚数单位,则复数的共轭复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13如图,已知一块半径为2的残缺的半圆形材料,O为半圆的圆心,残缺部分位于过点C的竖直线的右侧,现要在这块材料上裁出一个直角三角形,若该直角三角形一条边在上,则裁出三角形面积的最大值为_.14已知数列的前项和公式为,则数列的通项公式为_15为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量与时间的函数关系为(如图所示),实验表明,当药物释放量对人体无害. (1)_;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过_分钟人方可进入房间.16已知函数的图象在点处的切线方程是,则的值等于_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,.(1)解;(2)若,证明:.18(12分) 选修4-5:不等式选讲:已知函数.(1)当时,求不等式的解集;(2)设,且的最小值为.若,求的最小值.19(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率20(12分)在直角坐标系中,椭圆的左、右焦点分别为,点在椭圆上且轴,直线交轴于点,椭圆的离心率为.(1)求椭圆的方程;(2)过的直线交椭圆于两点,且满足,求的面积.21(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极轴已知曲线的极坐标方程为,是上一动点,点的轨迹为(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程22(10分)设的内角、的对边长分别为、.设为的面积,满足.(1)求;(2)若,求的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.【详解】,函数是奇函数,排除,时,时,排除,当时, 时,排除,符合条件,故选C.【点睛】本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.2、D【解析】由已知等式求出z,再由共轭复数的概念求得,即可得虚部.【详解】由zi1i,z ,所以共轭复数=-1+,虚部为1故选D【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题3、D【解析】中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.【详解】由茎叶图知,甲的中位数为,故;乙的平均数为,解得,所以.故选:D.【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.4、A【解析】由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率【详解】由题意,由双曲线定义得,从而得,在中,由余弦定理得,化简得故选:A【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式5、A【解析】先确定集合中的元素,然后由交集定义求解【详解】,.故选:A【点睛】本题考查求集合的交集运算,掌握交集定义是解题关键6、C【解析】判断圆心与直线的关系,确定直线,关于直线对称的充要条件是与直线垂直,从而等于到直线的距离,由切线性质求出,得,从而得【详解】如图,设圆的圆心为,半径为,点不在直线上,要满足直线,关于直线对称,则必垂直于直线,设,则,,故选:C【点睛】本题考查直线与圆的位置关系,考查直线的对称性,解题关键是由圆的两条切线关于直线对称,得出与直线垂直,从而得就是圆心到直线的距离,这样在直角三角形中可求得角7、A【解析】直接利用复数代数形式的乘除运算化简,求得的坐标得出答案.【详解】解:,在复平面内对应的点的坐标是.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题8、D【解析】易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a的取值范围.【详解】易知函数单调递增且有惟一的零点为,所以,问题转化为:使方程在区间上有解,即在区间上有解,而根据“对勾函数”可知函数在区间的值域为,.故选D【点睛】本题考查了函数的零点问题,考查了方程有解问题,分离参数法及构造函数法的应用,考查了利用“对勾函数”求参数取值范围问题,难度较难.9、A【解析】根据题意依次计算得到答案.【详解】根据题意知:,故,.故选:.【点睛】本题考查了数列值的计算,意在考查学生的计算能力.10、A【解析】根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论.【详解】程序框图共运行3次,输出的的范围是,所以输出的不小于103的概率为.故选:A.【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.11、C【解析】根据抛物线定义,可得,又,所以,所以,设,则,则,所以,所以直线的斜率故选C12、B【解析】由共轭复数的定义得到,通过三角函数值的正负,以及复数的几何意义即得解【详解】由题意得,因为,所以在复平面内对应的点位于第二象限故选:B【点睛】本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分两种情况讨论:(1)斜边在BC上,设,则,(2)若在若一条直角边在上,设,则,进一步利用导数的应用和三角函数关系式恒等变形和函数单调性即可求出最大值.【详解】(1)斜边在上,设,则,则,从而.当时,此时,符合.(2)若一条直角边在上,设,则,则,由知.,当时,单调递增,当时,单调递减,.当,即时,最大.故答案为:.【点睛】此题考查实际问题中导数,三角函数和函数单调性的综合应用,注意分类讨论把所有情况考虑完全,属于一般性题目.14、【解析】由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式【详解】由题意,可知当时,;当时,. 又因为不满足,所以.【点睛】本题主要考查了利用数列的通项与前n项和之间的关系求解数列的通项公式,其中解答中熟记数列的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题15、2 40 【解析】(1)由时,即可得出的值;(2)解不等式组,即可得出答案.【详解】(1)由图可知,当时,即(2)由题意可得,解得则为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过分钟人方可进入房间.故答案为:(1)2;(2)40【点睛】本题主要考查了分段函数的应用,属于中档题.16、【解析】利用导数的几何意义即可解决.【详解】由已知,故.故答案为:.【点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】(1)在不等式两边平方化简转化为二次不等式,解此二次不等式即可得出结果;(2)利用绝对值三角不等式可证得成立.【详解】(1),由得,不等式两边平方得,即,解得或.因此,不等式的解集为;(2),由绝对值三角不等式可得.因此,.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用绝对值三角不等式证明不等式,考查推理能力与运算求解能力,属于中等题.18、(1) (2)【解析】(1)当时,原不等式可化为,分类讨论即可求得不等式的解集;(2)由题意得,的最小值为,所以,由,得,利用基本不等式即可求解其最小值【详解】(1)当时,原不等式可化为,当时,不等式可化为,解得,此时;当时,不等式可化为,解得,此时;当时,不等式可化为,解得,此时,综上,原不等式的解集为.(2)由题意得, ,因为的最小值为,所以,由,得,所以 ,当且仅当,即,时,的最小值为.【点睛】本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向19、(1)(2)【解析】(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间20,25)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率(2)当温度大于等于25时,需求量为500,求出Y900元;当温度在20,25)时,需求量为300,求出Y300元;当温度低于20时,需求量为200,求出Y100元,从而当温度大于等于20时,Y0,由此能估计估计Y大于零的概率【详解】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间20,25)和最高气温低于20的天数为2+16+3654,根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,六月份这种酸奶一天的需求量不超过300瓶的概率p(2)当温度大于等于25时,需求量为500,Y450×2900元,当温度在20,25)时,需求量为300,Y300×2(450300)×2300元,当温度低于20时,需求量为200,Y400(450200)×2100元,当温度大于等于20时,Y0,由前三年六月份各天的最高气温数据,得当温度大于等于20的天数有:90(2+16)72,估计Y大于零的概率P【点睛】本题考查概率的求法,考查利润的所有可能取值的求法,考查函数、古典概型等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题20、(1);(2).【解析】(1)根据离心率以及,即可列方程求得,则问题得解;(2)设直线方程为,联立椭圆方程,结合韦达定理,根据题意中转化出的,即可求得参数,则三角形面积得解.【详解】(1)设,由题意可得.因为是的中位线,且,所以,即,因为进而得,所以椭圆方程为(2)由已知得两边平方整理可得.当直线斜率为时,显然不成立.直线斜率不为时,设直线的方程为,联立消去,得,所以,由得将代入整理得,展开得,整理得,所以.即为所求.【点睛】本题考查由离心率求椭圆的方程,以及椭圆三角形面积的求解,属综合中档题.21、(1),;(2).【解析】(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;(2)设点对应的参数分别为,则,将直线的参数方程代入的直角坐标方程中,再利用韦达定理可得,则,求得取最小值时符合的条件,进而求得直线的普通方程.【详解】(1)设点极坐标分别为,因为,则,所以曲线的极坐标方程为,两边同乘,得,所以的直角坐标方程为,即.(2)设点对应的参数分别为,则,,将直线的参数方程(参数),代入的直角坐标方程中,整理得.由韦达定理得,所以,当且仅当时,等号成立,则,所以当取得最小值时,直线的普通方程为.【点睛】本题考查极坐标与直角坐标方程的转化,考查利用直线的参数方程研究直线与圆的位置关系22、 (1);(2).【解析】(1)根据条件形式选择,然后利用余弦定理和正弦定理化简,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分别用角的三角函数值表示出,即可得到,再利用三角恒等变换,化简为,即可求出最大值【详解】(1),即,变形得:,整理得:,又,;(2),由正弦定理知,当且仅当时取最大值故的最大值为.【点睛】本题主要考查正弦定理,余弦定理,三角形面积公式的应用,以及利用三角恒等变换求函数的最值,意在考查学生的转化能力和数学运算能力,属于基础题

    注意事项

    本文(内蒙古一机集团第一中学2023届高三六校第一次联考数学试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开