内蒙古自治区呼伦贝尔市、兴安盟达标名校2023年中考数学最后冲刺模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC/BD/y轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为,则k的值为( )A4B3C2D2如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )AAB=ADBAC平分BCDCAB=BDDBECDEC32018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A29.8×109B2.98×109C2.98×1010D0.298×10104若方程x23x4=0的两根分别为x1和x2,则+的值是()A1B2CD5如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC的位置,此时露在水面上的鱼线B'C'长度是()A3mB mC mD4m6已知xa=2,xb=3,则x3a2b等于()AB1C17D727如图,五边形ABCDE中,ABCD,1、2、3分别是BAE、AED、EDC的外角,则1+2+3等于A90°B180°C210°D270°8某商品价格为元,降价10后,又降价10,因销售量猛增,商店决定再提价20,提价后这种商品的价格为( )A0.96元B0.972元C1.08元D元9若点P(3,y1)和点Q(1,y2)在正比例函数y=k2x(k0)图象上,则y1与y2的大小关系为()Ay1y2 By1y2 Cy1y2 Dy1y210如图所示,的顶点是正方形网格的格点,则的值为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11若一次函数y=x+b(b为常数)的图象经过点(1,2),则b的值为_12若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+3的值为_13若关于x的方程=0有增根,则m的值是_14将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则1的度数为_ 15已知,如图,正方形ABCD的边长是8,M在DC上,且DM2,N是AC边上的一动点,则DN+MN的最小值是_16不等式12x6的负整数解是_三、解答题(共8题,共72分)17(8分)如图,两座建筑物的水平距离为.从点测得点的仰角为53° ,从点测得点的俯角为37° ,求两座建筑物的高度(参考数据:18(8分)4×100米拉力赛是学校运动会最精彩的项目之一图中的实线和虚线分别是初三一班和初三二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计)问题:(1)初三二班跑得最快的是第 接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?19(8分)如图,在ABC中,(1)求作:BAD=C,AD交BC于D(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,求证:AB2=BDBC20(8分)在ABCD,过点D作DEAB于点E,点F在边CD上,DFBE,连接AF,BF.求证:四边形BFDE是矩形;若CF3,BF4,DF5,求证:AF平分DAB21(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”例如图1,图2,图1中,AF,BE是ABC的中线,AFBE,垂足为P,像ABC这样的三角形均为“中垂三角形”设BCa,ACb,ABc特例探索(1)如图1,当ABE45°,c时,a ,b ;如图2,当ABE10°,c4时,a ,b ;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在ABCD中,点E,F,G分别是AD,BC,CD的中点,BEEG,AD,AB1求AF的长22(10分)如图,在等边ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE求证:AEBC23(12分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)ABFDCE;四边形ABCD是矩形24计算:(2)0+|1|+2cos30°参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC/BD/ y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出SOAC,SABD的面积,再根据OAC与ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,A(1,1),把x=2代入得:y=,B(2, ),AC/BD/ y轴,C(1,K),D(2,)AC=k-1,BD=-,SOAC=(k-1)×1,SABD= (-)×1,又OAC与ABD的面积之和为,(k-1)×1 (-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.2、C【解析】解:AC垂直平分BD,AB=AD,BC=CD,AC平分BCD,平分BCD,BE=DEBCE=DCE在RtBCE和RtDCE中,BE=DE,BC=DC,RtBCERtDCE(HL)选项ABD都一定成立故选C3、B【解析】根据科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,且为这个数的整数位数减1,由此即可解答【详解】29.8亿用科学记数法表示为: 29.8亿=29800000002.98×1故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、C【解析】试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1x2=4代入,即可求出=故选C考点:根与系数的关系5、B【解析】因为三角形ABC和三角形ABC均为直角三角形,且BC、BC都是我们所要求角的对边,所以根据正弦来解题,求出CAB,进而得出CAB的度数,然后可以求出鱼线B'C'长度【详解】解:sinCABCAB45°CAC15°,CAB60°sin60°,解得:BC3故选:B【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题6、A【解析】xa=2,xb=3,x3a2b=(xa)3÷(xb)2=8÷9= ,故选A.7、B【解析】试题分析:如图,如图,过点E作EFAB,ABCD,EFABCD,1=4,3=5,1+2+3=2+4+5=180°,故选B8、B【解析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可【详解】第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,提价20%的价格为0.81a×(1+20%)=0.972a元,故选B【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键9、A【解析】分别将点P(3,y1)和点Q(1,y2)代入正比例函数y=k2x,求出y1与y2的值比较大小即可.【详解】点P(3,y1)和点Q(1,y2)在正比例函数y=k2x(k0)图象上,y1=k2×(-3)=3k2,y2=k2×(-1)=k2,k0,y1y2.故答案选A.【点睛】本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.10、B【解析】连接CD,求出CDAB,根据勾股定理求出AC,在RtADC中,根据锐角三角函数定义求出即可【详解】解:连接CD(如图所示),设小正方形的边长为,BD=CD=,DBC=DCB=45°,在中,则故选B【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形二、填空题(本大题共6个小题,每小题3分,共18分)11、3【解析】把点(1,2)代入解析式解答即可【详解】解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,解得:b=3,故答案为3【点睛】本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答12、1【解析】根据方程的系数结合根的判别式即可得出=m24m=0,将其代入2m28m+1中即可得出结论【详解】关于x的方程x2mx+m=0有两个相等实数根,=(m)24m=m24m=0,2m28m+1=2(m24m)+1=1故答案为1【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键13、2【解析】去分母得,m-1-x=0.方程有增根,x=1, m-1-1=0, m=2.14、75°【解析】先根据同旁内角互补,两直线平行得出ACDF,再根据两直线平行内错角相等得出2=A=45°,然后根据三角形内角与外角的关系可得1的度数【详解】ACB=DFE=90°,ACB+DFE=180°,ACDF,2=A=45°,1=2+D=45°+30°=75°故答案为:75°【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出2=A=45°是解题的关键15、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解解答:解:如图,连接BM,点B和点D关于直线AC对称,NB=ND,则BM就是DN+MN的最小值,正方形ABCD的边长是8,DM=2,CM=6,BM=1,DN+MN的最小值是1故答案为1点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用16、2,1【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可解:12x6,移项得:2x61,合并同类项得:2x5,不等式的两边都除以2得:x,不等式的负整数解是2,1,故答案为:2,1点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键三、解答题(共8题,共72分)17、建筑物的高度为.建筑物的高度为.【解析】分析:过点D作DEAB于于E,则DE=BC=60m在RtABC中,求出AB在RtADE中求出AE即可解决问题详解:过点D作DEAB于于E,则DE=BC=60m, 在RtABC中,tan53°=,AB=80(m)在RtADE中,tan37°=,AE=45(m),BE=CD=ABAE=35(m)答:两座建筑物的高度分别为80m和35m点睛:本题考查的是解直角三角形的应用仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键18、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列【解析】(1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;(2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可【详解】(1)从函数图象上可看出初三二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;(2)设在图象相交的部分,设一班的直线为y1kx+b,把点(28,200),(40,300)代入得:解得:k,b,即y1x,二班的为y2kx+b,把点(25,200),(41,300),代入得:解得:k,b,即y2x+联立方程组,解得:,所以发令后第37秒两班运动员在275米处第一次并列【点睛】本题考查了利用一次函数的模型解决实际问题的能力和读图能力要先根据题意列出函数关系式,再代数求值解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息要掌握利用函数解析式联立成方程组求交点坐标的方法19、(1)作图见解析;(2)证明见解析;【解析】(1)以C为圆心,任意长为半径画弧,交CB、CA于E、F;以A为圆心,CE长为半径画弧,交AB于G;以G为圆心,EF长为半径画弧,两弧交于H;连接AH并延长交BC于D,则BAD=C;(2)证明ABDCBA,然后根据相似三角形的性质得到结论【详解】(1)如图,BAD为所作;(2)BAD=C,B=BABDCBA,AB:BC=BD:AB,AB2=BDBC【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线)也考查了相似三角形的判定与性质20、(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得DFA=FAB,根据等腰三角形的判定与性质,可得DAF=DFA,根据角平分线的判定,可得答案试题分析:(1)证明:四边形ABCD是平行四边形,ABCDBEDF,BE=DF,四边形BFDE是平行四边形DEAB,DEB=90°,四边形BFDE是矩形;(2)四边形ABCD是平行四边形,ABDC,DFA=FAB在RtBCF中,由勾股定理,得BC=5,AD=BC=DF=5,DAF=DFA,DAF=FAB,即AF平分DAB【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出DAF=DFA是解题关键21、(1)2,2;2,2;(2)+=5;(1)AF=2【解析】试题分析:(1)AFBE,ABE=25°,AP=BP=AB=2,AF,BE是ABC的中线,EFAB,EF=AB=,PFE=PEF=25°,PE=PF=1,在RtFPB和RtPEA中,AE=BF=,AC=BC=2,a=b=2,如图2,连接EF,同理可得:EF=×2=2,EFAB,PEFABP,在RtABP中,AB=2,ABP=10°,AP=2,PB=2,PF=1,PE=,在RtAPE和RtBPF中,AE=,BF=,a=2,b=2,故答案为2,2,2,2;(2)猜想:a2+b2=5c2,如图1,连接EF,设ABP=,AP=csin,PB=ccos,由(1)同理可得,PF=PA=,PE=,AE2=AP2+PE2=c2sin2+,BF2=PB2+PF2=+c2cos2,=c2sin2+,=+c2cos2,+=+c2cos2+c2sin2+,a2+b2=5c2;(1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,点E、G分别是AD,CD的中点,EGAC,BEEG,BEAC,四边形ABCD是平行四边形,ADBC,AD=BC=2,EAH=FCH,E,F分别是AD,BC的中点,AE=AD,BF=BC,AE=BF=CF=AD=,AEBF,四边形ABFE是平行四边形,EF=AB=1,AP=PF,在AEH和CFH中,AEHCFH,EH=FH,EQ,AH分别是AFE的中线,由(2)的结论得:AF2+EF2=5AE2,AF2=5EF2=16,AF=2考点:相似形综合题22、见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,B=ACB=60°,根据旋转的性质得出CD=CE,DCE=60°,求出BCD=ACE,根据SAS推出BCDACE,根据全等得出EAC=B=60°,求出EAC=ACB,根据平行线的判定得出即可.试题解析:ABC是等边三角形,AC=BC,B=ACB=60°,线段CD绕点C顺时针旋转60°得到CE,CD=CE,DCE=60°,DCE=ACB,即BCD+DCA=DCA+ACE,BCD=ACE,在BCD与ACE中,BCDACE,EAC=B=60°,EAC=ACB,AEBC.23、(1)见解析;(2)见解析.【解析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC利用“SSS”得ABFDCE(2)平行四边形的性质得到两边平行,从而B+C=180°利用全等得B=C,从而得到一个直角,问题得证.【详解】(1)BE=CF,BF=BE+EF,CE=CF+EF,BF=CE四边形ABCD是平行四边形,AB=DC在ABF和DCE中,AB=DC,BF=CE,AF=DE,ABFDCE(2)ABFDCE,B=C四边形ABCD是平行四边形,ABCDB+C=180°B=C=90°平行四边形ABCD是矩形24、【解析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果【详解】原式,【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键