内蒙古包头市东河区2022-2023学年中考联考数学试题含解析.doc
-
资源ID:87846242
资源大小:647KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
内蒙古包头市东河区2022-2023学年中考联考数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若ADE125°,则DBC的度数为( )A125°B75°C65°D55°2从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲21.5,S乙22.6,S丙23.5,S丁23.68,你认为派谁去参赛更合适()A甲B乙C丙D丁3如图,ABC中,DE垂直平分AC交AB于E,A=30°,ACB=80°,则BCE等于()A40°B70°C60°D50°4如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB添加一个条件,不能使四边形DBCE成为矩形的是( )AAB=BEBBEDCCADB=90°DCEDE5下列大学的校徽图案是轴对称图形的是( )ABCD6一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )ABCD7如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A(,-1)B(2,1)C(1,-)D(1,)8整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足( ).ABCD9实数a、b、c在数轴上的位置如图所示,则代数式|ca|a+b|的值等于()Ac+bBbcCc2a+bDc2ab10下列计算正确的是()A2x23x2x2Bxxx2C(x1)x1D3x3x二、填空题(本大题共6个小题,每小题3分,共18分)11已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 12比较大小:_3(填“”或“”或“”)13如图,平行四边形ABCD中,AB=AC=4,ABAC,O是对角线的交点,若O过A、C两点,则图中阴影部分的面积之和为_14关于x的不等式组有2个整数解,则a的取值范围是_.15如图,四边形ABCD中,ADCD,B2D120°,C75°则 16菱形的两条对角线长分别是方程的两实根,则菱形的面积为_三、解答题(共8题,共72分)17(8分)如图,一次函数yx5的图象与反比例函数y (k0)在第一象限的图象交于A(1,n)和B两点求反比例函数的解析式;在第一象限内,当一次函数yx5的值大于反比例函数y (k0)的值时,写出自变量x的取值范围18(8分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖她从中随机翻开一张纸牌,求小芳获奖的概率(2)如果小芳、小明都有翻两张牌的机会小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌他们翻开的两张纸牌中只要出现一张笑脸就获奖他们获奖的机会相等吗?通过树状图分析说明理由19(8分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0)点C、D分别在OB、AB边上,DCOA,CB=2(I)如图,将DCB沿射线CB方向平移,得到DCB当点C平移到OB的中点时,求点D的坐标;(II)如图,若边DC与AB的交点为M,边DB与ABB的角平分线交于点N,当BB多大时,四边形MBND为菱形?并说明理由(III)若将DCB绕点B顺时针旋转,得到DCB,连接AD,边DC的中点为P,连接AP,当AP最大时,求点P的坐标及AD的值(直接写出结果即可)20(8分)如图,在平面直角坐标系中,正方形的边长为,顶点、分别在轴、轴的正半轴,抛物线经过、两点,点为抛物线的顶点,连接、求此抛物线的解析式求此抛物线顶点的坐标和四边形的面积21(8分)如图,在四边形ABCD中,ABC=90°,CAB=30°,DEAC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长22(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率23(12分)如图,已知抛物线yx24与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线yx+m经过点A,与y轴交于点D求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD,求新抛物线对应的函数表达式24为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】延长CB,根据平行线的性质求得1的度数,则DBC即可求得【详解】延长CB,延长CB,ADCB,1=ADE=145,DBC=1801=180125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.2、A【解析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.3、D【解析】根据线段垂直平分线性质得出AE=CE,推出A=ACE=30°,代入BCE=ACB-ACE求出即可【详解】DE垂直平分AC交AB于E,AE=CE,A=ACE,A=30°,ACE=30°,ACB=80°,BCE=ACB-ACE=50°,故选D【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等4、B【解析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答【详解】四边形ABCD为平行四边形,ADBC,AD=BC,又AD=DE,DEBC,且DE=BC,四边形BCED为平行四边形,A、AB=BE,DE=AD,BDAE,DBCE为矩形,故本选项错误;B、对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、ADB=90°,EDB=90°,DBCE为矩形,故本选项错误;D、CEDE,CED=90°,DBCE为矩形,故本选项错误,故选B【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.5、B【解析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合6、B【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.7、A【解析】作ADy轴于D,作CEy轴于E,则ADO=OEC=90°,得出1+1=90°,由正方形的性质得出OC=AO,1+3=90°,证出3=1,由AAS证明OCEAOD,得到OE=AD=1,CE=OD=,即可得出结果【详解】解:作ADy轴于D,作CEy轴于E,如图所示:则ADO=OEC=90°,1+1=90°AO=1,AD=1,OD=,点A的坐标为(1,),AD=1,OD=四边形OABC是正方形,AOC=90°,OC=AO,1+3=90°,3=1在OCE和AOD中,OCEAOD(AAS),OE=AD=1,CE=OD=,点C的坐标为(,1)故选A【点睛】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键8、D【解析】根据acb,可得c的最小值是1,根据有理数的加法,可得答案【详解】由acb,得:c最小值是1,当c=1时,c+d=1+d,1+d0,解得:d1,db故选D【点睛】本题考查了实数与数轴,利用acb得出c的最小值是1是解题的关键9、A【解析】根据数轴得到ba0c,根据有理数的加法法则,减法法则得到c-a0,a+b0,根据绝对值的性质化简计算【详解】由数轴可知,ba0c,c-a0,a+b0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键10、C【解析】根据合并同类项法则和去括号法则逐一判断即可得【详解】解:A2x2-3x2=-x2,故此选项错误;Bx+x=2x,故此选项错误;C-(x-1)=-x+1,故此选项正确;D3与x不能合并,此选项错误;故选C【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题分析:因为2+24,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1考点:等腰三角形的性质;三角形三边关系12、>.【解析】先利用估值的方法先得到3.4,再进行比较即可.【详解】解:3.4,3.4>3.>3.故答案为:>.【点睛】本题考查了实数的比较大小,对进行合理估值是解题的关键.13、1【解析】AOB=COD,S阴影=SAOB四边形ABCD是平行四边形,OA=AC=×1=2ABAC,S阴影=SAOB=OAAB=×2×1=1【点睛】本题考查了扇形面积的计算14、8a<13;【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围【详解】解不等式3x5>1,得:x>2,解不等式5xa12,得:x ,不等式组有2个整数解,其整数解为3和4,则4<5,解得:8a<13,故答案为:8a<13【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键15、【解析】连接AC,过点C作CEAB的延长线于点E,,如图,先在RtBEC中根据含30度的直角三角形三边的关系计算出BC、CE,判断AEC为等腰直角三角形,所以BAC=45°,AC=,利用即可求解【详解】连接AC,过点C作CEAB的延长线于点E,ABC=2D=120°, D=60°, ADCD, ADC是等边三角形,D+DAB+ABC+DCB=360°, ACB=DCB-DCA=75°-60°=15°, BAC=180°-ABC-ACB=180°-120°-15°=45°, AE=CE,EBC=45°+15°=60°, BCE=90°-60°=30°,设BE=x,则BC=2x,CE=,在RTAEC中,AC=,故答案为.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形合理作辅助线是解题的关键16、2【解析】解:x214x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1所以菱形的面积为:(6×1)÷2=2菱形的面积为:2故答案为2点睛:本题考查菱形的性质菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系三、解答题(共8题,共72分)17、(1);(2)1x1.【解析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数yx5的值大于反比例函数y,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可【详解】解:(1)一次函数y=x+5的图象过点A(1,n),n=1+5,解得:n=1,点A的坐标为(1,1)反比例函数y=(k0)过点A(1,1),k=1×1=1,反比例函数的解析式为y=联立,解得:或,点B的坐标为(1,1)(2)观察函数图象,发现:当1x1.时,反比例函数图象在一次函数图象下方,当一次函数y=x+5的值大于反比例函数y=(k0)的值时,x的取值范围为1x1【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键18、(1);(2)他们获奖机会不相等,理由见解析.【解析】(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率【详解】(1)有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,获奖的概率是;故答案为;(2)他们获奖机会不相等,理由如下:小芳:笑1笑2哭1哭2笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,P(小芳获奖)=;小明:笑1笑2哭1哭2笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,P(小明获奖)=,P(小芳获奖)P(小明获奖),他们获奖的机会不相等【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比19、()D(3+,3);()当BB'=时,四边形MBND'是菱形,理由见解析;()P()【解析】()如图中,作DHBC于H首先求出点D坐标,再求出CC的长即可解决问题;()当BB'=时,四边形MBND'是菱形首先证明四边形MBND是平行四边形,再证明BB=BC即可解决问题;()在ABP中,由三角形三边关系得,APAB+BP,推出当点A,B,P三点共线时,AP最大.【详解】()如图中,作DHBC于H,AOB是等边三角形,DCOA,DCB=AOB=60°,CDB=A=60°,CDB是等边三角形,CB=2,DHCB,CH=HB=,DH=3,D(6,3),CB=3,CC=23,DD=CC=23,D(3+,3)()当BB'=时,四边形MBND'是菱形,理由:如图中,ABC是等边三角形,ABO=60°,ABB'=180°ABO=120°,BN是ACC'的角平分线,NBB'=ABB'=60°=DCB,D'C'BN,ABBD四边形MBND'是平行四边形,ME'C'=MCE'=60°,NCC'=NC'C=60°,MCB'和NBB'是等边三角形,MC=CE',NC=CC',B'C'=2,四边形MBND'是菱形,BN=BM,BB'=B'C'=;()如图连接BP,在ABP中,由三角形三边关系得,APAB+BP,当点A,B,P三点共线时,AP最大,如图中,在D'BE'中,由P为D'E的中点,得APD'E',PD'=,CP=3,AP=6+3=9,在RtAPD'中,由勾股定理得,AD'=2此时P(,)【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大20、 ;【解析】(1)由正方形的性质可求得B、C的坐标,代入抛物线解析式可求得b、c的值,则可求得抛物线的解析式;(2)把抛物线解析式化为顶点式可求得D点坐标,再由S四边形ABDC=SABC+SBCD可求得四边形ABDC的面积【详解】由已知得:,把与坐标代入得:,解得:,则解析式为;,抛物线顶点坐标为,则【点睛】二次函数的综合应用解题的关键是:在(1)中确定出B、C的坐标是解题的关键,在(2)中把四边形转化成两个三角形21、38+12 【解析】根据ABC=90°,AE=CE,EB=12,求出AC,根据RtABC中,CAB=30°,BC=12,求出根据DEAC,AE=CE,得AD=DC,在RtADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案【详解】ABC=90°,AE=CE,EB=12,EB=AE=CE=12,AC=AE+CE=24,在RtABC中,CAB=30°,BC=12, DEAC,AE=CE,AD=DC,在RtADE中,由勾股定理得 DC=13,四边形ABCD的周长=AB+BC+CD+DA=【点睛】此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长22、(1);(2)【解析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案【详解】(1)小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,小明选择去白鹿原游玩的概率;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率23、(1)1 ;(1) yx14x+1或yx1+6x+1【解析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:yx1+bx+1,根据二次函数的性质求出点C的坐标,根据题意求出直线CC的解析式,代入计算即可【详解】解:(1)由x140得,x11,x11,点A位于点B的左侧,A(1,0),直线yx+m经过点A,1+m0,解得,m1,点D的坐标为(0,1),AD1;(1)设新抛物线对应的函数表达式为:yx1+bx+1,yx1+bx+1(x+)1+1,则点C的坐标为(,1),CC平行于直线AD,且经过C(0,4),直线CC的解析式为:yx4,14,解得,b14,b16,新抛物线对应的函数表达式为:yx14x+1或yx1+6x+1【点睛】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键24、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元【解析】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,2分解方程组得:,购进一件A种纪念品需要100元,购进一件B种纪念品需要50元4分;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100x)个,6分解得:50x53,7分x 为正整数,共有4种进货方案8分;(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件10分总利润=50×20+50×30=2500(元)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元12分