内蒙古自治区包头市重点名校2022-2023学年十校联考最后数学试题含解析.doc
-
资源ID:87846317
资源大小:1.10MB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
内蒙古自治区包头市重点名校2022-2023学年十校联考最后数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A360元B720元C1080元D2160元2如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()ABGFDG HD平分EHG AGBE SHDG:SHBG=tanDAG 线段DH的最小值是22ABCD3已知圆锥的侧面积为10cm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()A100cmBcmC10cmDcm4如图,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定5如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,BEF的面积为4,则平行四边形ABCD的面积为() A30B27C14D326如果,则a的取值范围是( )Aa>0Ba0Ca0Da<07如图,已知E,B,F,C四点在一条直线上,添加以下条件之一,仍不能证明的是ABCD8如果,那么代数式的值是( )A6B2C-2D-69在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为()ABCD10如图,直线mn,1=70°,2=30°,则A等于( ) A30°B35°C40°D50°二、填空题(本大题共6个小题,每小题3分,共18分)11竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h2t2+mt+,若小球经过秒落地,则小球在上抛的过程中,第_秒时离地面最高12如果a2b2=8,且a+b=4,那么ab的值是_13如图,在ABC中,DM垂直平分AC,交BC于点D,连接AD,若C=28°,AB=BD,则B的度数为_度14如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB8,CD2,则EC的长为_15如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_海里.(结果保留根号)16如图,ABCADE,EAC40°,则B_°三、解答题(共8题,共72分)17(8分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是 ;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.18(8分)在ABC中,已知AB=AC,BAC=90°,E为边AC上一点,连接BE(1)如图1,若ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG19(8分)关于x的一元二次方程ax2+bx+1=1当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根20(8分)先化简,再求值:,其中,21(8分)如图,AB是O的直径, O过BC的中点D,DEAC求证: BDACED22(10分)(1)计算:;(2)化简:23(12分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率24如图,在平面直角坐标系xOy中,直线与双曲线(x>0)交于点求a,k的值;已知直线过点且平行于直线,点P(m,n)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x>0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为横、纵坐标都是整数的点叫做整点当时,直接写出区域内的整点个数;若区域内的整点个数不超过8个,结合图象,求m的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可【详解】3m×2m=6m2,长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,扩大后长方形广告牌的面积=9×6=54m2,扩大后长方形广告牌的成本是54×20=1080元,故选C【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键2、B【解析】首先证明ABEDCF,ADGCDG(SAS),AGBCGB,利用全等三角形的性质,等高模型、三边关系一一判断即可【详解】解:四边形ABCD是正方形,AB=CD,BAD=ADC=90°,ADB=CDB=45°.在ABE和DCF中,AB=CD,BAD=ADC,AE=DF,ABEDCF,ABE=DCF.在ADG和CDG中,AD=CD,ADB=CDB,DG=DG,ADGCDG,DAG=DCF,ABE=DAG.DAG+BAH=90°,BAE+BAH=90°,AHB=90°,AGBE,故正确,同理可证:AGBCGB.DFCB,CBGFDG,ABGFDG,故正确.SHDG:SHBG=DG:BG=DF:BC=DF:CD=tanFCD,DAG=FCD,SHDG:SHBG=tanFCD=tanDAG,故正确.取AB的中点O,连接OD、OH.正方形的边长为4,AO=OH=×4=1,由勾股定理得,OD=,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=1-1无法证明DH平分EHG,故错误,故正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.3、C【解析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长【详解】设母线长为R,则圆锥的侧面积=10,R=10cm,故选C【点睛】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.4、B【解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】AB=CD,AC+BC=BC+BD,即AC=BD,又BC=2AC,BC=2BD,CD=3BD=3AC.故选B【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点5、A【解析】四边形ABCD是平行四边形,AB/CD,AB=CD,AD/BC,BEFCDF,BEFAED, ,BE:AB=2:3,AE=AB+BE,BE:CD=2:3,BE:AE=2:5, ,SBEF=4,SCDF=9,SAED=25,S四边形ABFD=SAED-SBEF=25-4=21,S平行四边形ABCD=SCDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.6、C【解析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1若|-a|=-a,则可求得a的取值范围注意1的相反数是1【详解】因为|-a|1,所以-a1,那么a的取值范围是a1故选C【点睛】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是17、B【解析】由EB=CF,可得出EF=BC,又有A=D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明ABCDEF,那么添加的条件与原来的条件可形成SSA,就不能证明ABCDEF了【详解】添加,根据AAS能证明,故A选项不符合题意B.添加与原条件满足SSA,不能证明,故B选项符合题意;C.添加,可得,根据AAS能证明,故C选项不符合题意;D.添加,可得,根据AAS能证明,故D选项不符合题意,故选B【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角8、A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】3a2+5a-1=0,3a2+5a=1,5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.9、A【解析】设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率【详解】解:设袋子中黄球有x个,根据题意,得:,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为,故选A【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比得到所求的情况数是解决本题的关键10、C【解析】试题分析:已知mn,根据平行线的性质可得3170°.又因3是ABD的一个外角,可得32A.即A3270°30°40°.故答案选C.考点:平行线的性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、.【解析】首先根据题意得出m的值,进而求出t的值即可求得答案【详解】竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h2t2+mt+,小球经过秒落地,t时,h0,则02×()2+m+,解得:m,当t时,h最大,故答案为:【点睛】本题考查了二次函数的应用,正确得出m的值是解题关键12、1【解析】根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案【详解】a1-b1=8,(a+b)(a-b)=8,a+b=4,a-b=1,故答案是:1【点睛】考查了平方差,关键是掌握(a+b)(a-b)=a1-b113、1【解析】根据线段垂直平分线上的点到两端点的距离相等可得ADCD,等边对等角可得DACC,三角形的一个外角等于与它不相邻的两个内角的和求出ADBCDAC,再次根据等边对等角可得可得ADBBAD,然后利用三角形的内角和等于180°列式计算即可得解【详解】DM垂直平分AC,ADCD,DACC28°,ADBCDAC28°28°56°,ABBD,ADBBAD56°,在ABD中,B180°BADADB180°56°56°1°故答案为1【点睛】本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键14、【解析】设O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长【详解】连接BE,设O半径为r,则OA=OD=r,OC=r-2,ODAB,ACO=90°,AC=BC=AB=4,在RtACO中,由勾股定理得:r2=42+(r-2)2,r=5,AE=2r=10,AE为O的直径,ABE=90°,由勾股定理得:BE=6,在RtECB中,EC.故答案是:.【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键15、5 【解析】如图,作BHAC于H在RtABH中,求出BH,再在RtBCH中,利用等腰直角三角形的性质求出BC即可【详解】如图,作BHAC于H在RtABH中,AB=10海里,BAH=30°,ABH=60°,BH=AB=5(海里),在RtBCH中,CBH=C=45°,BH=5(海里),BH=CH=5海里,CB=5(海里)故答案为:5【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题16、1°【解析】根据全等三角形的对应边相等、对应角相等得到BAC=DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可【详解】ABCADE,BAC=DAE,AB=AD,BAD=EAC=40°,B=(180°-40°)÷2=1°,故答案为1【点睛】本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键三、解答题(共8题,共72分)17、(1);(2);(3)【解析】(1)OA=6,即BC=6,代入,即可得出点B的坐标(2)将点B的坐标代入直线l中求出k即可得出解析式(3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值.【详解】解:OA=6,矩形OABC中,BC=OABC=6点B在直线上,解得x=8故点B的坐标为(8,6)故答案为(8,6)(2)把点的坐标代入得,解得:(3)一次函数,必经过),要使y随x的增大而减小y值为代入,解得.【点睛】本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题18、(1) (2)证明见解析【解析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题(2)如图2中,作CQAC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题【详解】解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME在 RtABE 中,OB=OE,BE=2OA=2,MB=ME,MBE=MEB=15°,AME=MBE+MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,AB2+AE2=BE2,x= (负根已经舍弃),AB=AC=(2+ ) ,BC= AB= +1作 CQAC,交 AF 的延长线于 Q, AD=AE ,AB=AC ,BAE=CAD,ABEACD(SAS),ABE=ACD,BAC=90°,FGCD,AEB=CMF,GEM=GME,EG=MG,ABE=CAQ,AB=AC,BAE=ACQ=90°,ABECAQ(ASA),BE=AQ,AEB=Q,CMF=Q,MCF=QCF=45°,CF=CF,CMFCQF(AAS),FM=FQ,BE=AQ=AF+FQ=AF=FM,EG=MG,BG=BE+EG=AF+FM+MG=AF+FG【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题19、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=2【解析】分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(2)解:由题意:,原方程有两个不相等的实数根(2)答案不唯一,满足()即可,例如:解:令,则原方程为,解得:点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.20、9【解析】根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】 当,时,原式 【点睛】本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法21、证明见解析.【解析】不难看出BDA和CED都是直角三角形,证明BDACED,只需要另外找一对角相等即可,由于AD是ABC的中线,又可证ADBC,即AD为BC边的中垂线,从而得到B=C,即可证相似【详解】AB是O直径,ADBC,又BD=CD,AB=AC,B=C,又ADB=DEC=90°,BDACED.【点睛】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用22、(1)4+;(2).【解析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题【详解】(1)=4+1+|12×|=4+1+|1|=4+1+1=4+;(2) =【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法23、 (1)200;(2)72°,作图见解析;(3).【解析】(1)用一等奖的人数除以所占的百分比求出总人数; (2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;(3)用获得一等奖和二等奖的人数除以总人数即可得出答案.【详解】解:(1)这次知识竞赛共有学生=200(名);(2)二等奖的人数是:200×(110%24%46%)=40(人),补图如下:“二等奖”对应的扇形圆心角度数是:360°×=72°;(3)小华获得“一等奖或二等奖”的概率是: =【点睛】本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.24、(1),;(2) 3, .【解析】(1)将代入可求出a,将A点坐标代入可求出k;(2)根据题意画出函数图像,可直接写出区域内的整点个数;求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.【详解】解:(1)将代入得a=4将代入,得(2)区域内的整点个数是3直线是过点且平行于直线直线的表达式为当时,即线段PM上有整点 【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.