欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    [精选]第6章CMOS集成电路制造工艺.pptx

    • 资源ID:87849662       资源大小:5.11MB        全文页数:92页
    • 资源格式: PPTX        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    [精选]第6章CMOS集成电路制造工艺.pptx

    第6章 CMOS集成电路制造工艺第6章 CMOS集成电路制造工艺6.1 CMOS工艺6.2 CMOS幅员设计6.3 封装技术3木版年画画稿刻版套色印刷4半导体芯片制作过程5硅片wafer的制作6掩模版mask,reticle的制作7外延衬底的制作8集成电路加工的基本操作1、形成薄膜二氧化硅、多晶硅、金属等薄层2、形成图形器件和互连线3、掺 杂调整器件特性91、形成图形半导体加工过程:将设计者提供的集成电路幅员图形复制到硅片上光刻与刻蚀:半导体加工水平决定于光刻和刻蚀所形成的线条宽度10光刻photolithography11曝光exposure12刻蚀etch13光刻的基本原理14正胶和负胶的差异152、薄膜形成:淀积162、薄膜形成:氧化173、掺杂:扩散和注入18从器件到电路:通孔19从器件到电路:互连线20从器件到电路:多层互连21从器件到电路:多层互连22从硅片到芯片:加工后端23从硅片到芯片:加工后端24从硅片到芯片:加工后端6.1 CMOS工艺6.1.1 基本工艺步骤6.1.2 n阱CMOS工艺流程6.1.3 硅基CMOS中的闩锁效应6.1.4 先进的CMOS工艺6.1.1 基本工艺步骤1 氧化CMOS集成电路中SiO2层的主要作用:做MOS晶体管的栅绝缘介质;做杂质扩散和离子注入的掩蔽层和阻挡层;做MOS晶体管之间的隔离介质;做多晶硅、金属等互连层之间的绝缘介质;做芯片外表的钝化层。热氧化法:干氧、湿氧、干氧-湿氧-干氧交替氧化6.1.1 基本工艺步骤2 淀积通过物理或化学的方法把另一种物质淀积在硅片外表形成薄膜低温。物理气相淀积Physical Vapor Deposition,PVD蒸发溅射化学气相淀积Chemical Vapor Deposition,CVD6.1.1 基本工艺步骤3 光刻和刻蚀把掩膜版上的图形转移到硅片。生长一层SiO2薄膜;在硅外表均匀涂抹一层光刻胶以负胶为例;盖上掩膜版进行光照,使掩膜版上亮的Clear区域对应的光刻胶被曝光,而掩膜版上暗的Dark区域对应的光刻胶不能被曝光。6.1.1 基本工艺步骤3 光刻和刻蚀 把未被曝光的胶去掉,显影后掩膜版上的图形转移到光刻胶上;采用湿法刻蚀或干法刻蚀去除没有光刻胶保护的SiO2;去除残留在硅片上的所有光刻胶,完成幅员图形到硅片图形的转移。6.1.1 基本工艺步骤3 光刻和刻蚀光刻胶负胶:曝光前可溶于某种溶液而曝光后变为不可溶;正胶:曝光前不溶于某种溶液而曝光后变为可溶;通常正胶的分辨率高于负胶。6.1.1 基本工艺步骤4 扩散和离子注入在硅衬底中掺入杂质原子,以改变半导体电学性质,形成pn结、电阻、欧姆接触等结构。扩散:杂质原子在高温下克服阻力进入半导体,并缓慢运动。替位式扩散、间隙式扩散离子注入:将具有很高能量的带电杂质离子射入硅衬底中。需高温退火6.1 CMOS工艺6.1.1 基本工艺步骤6.1.2 n阱CMOS工艺流程6.1.3 硅基CMOS中的闩锁效应6.1.4 先进的CMOS工艺6.1.2 n阱CMOS工艺流程两种器件需要两种导电类型的衬底。在n型衬底上形成p阱,把NMOS管做在p阱里;或在p型衬底上形成n阱,把PMOS管做在n阱里。6.1.2 n阱CMOS工艺流程 准备硅片材料p型晶向硅片 形成n阱热氧化,形成掩蔽层光刻和刻蚀,开出n阱区窗口离子注入并高温退火,形成n阱6.1.2 n阱CMOS工艺流程 场区隔离局部氧化Local Oxidation of Silicon,LOCOS工艺利用有源区掩膜版进行光刻和刻蚀,露出场区场区注入去除光刻胶,场区热生长一层厚的氧化层去除有源区上的保护层场区和有源区的氧化层台阶降低,平整度提高。6.1.2 n阱CMOS工艺流程 形成多晶硅栅热氧化生长栅氧化层CVD淀积多晶硅并离子注入光刻和刻蚀 源漏区n+/p+注入利用同一n+掩膜版,采用负胶和正胶进行两次光刻和刻蚀,分别进行n+注入和p+注入。6.1.2 n阱CMOS工艺流程 形成接触孔CVD淀积绝缘层光刻和刻蚀形成接触孔 形成金属互连淀积金属层光刻和刻蚀形成金属互连6.1.2 n阱CMOS工艺流程 形成钝化层淀积Si3N4或磷硅玻璃光刻和刻蚀,形成钝化图形铝栅工艺:源或漏区与栅之间形成缺口,无法形成连续的沟道。硅栅工艺:“自对准6.1 CMOS工艺6.1.1 基本工艺步骤6.1.2 n阱CMOS工艺流程6.1.3 硅基CMOS中的闩锁效应6.1.4 先进的CMOS工艺6.1.3 硅基CMOS中的闩锁效应寄生晶体管Q1、Q2,寄生电阻Rnw、Rsub构成等效电路Q1和Q2交叉耦合形成正反响回路电流在Q1和Q2之间循环放大VDD和GND之间形成极大的电流,电源和地之间锁定在一个很低的电压维持电压Vh6.1.3 硅基CMOS中的闩锁效应发生闩锁效应后VDD和GND之间的电流-电压特性防止闩锁效应的方法:提高阱区和衬底掺杂浓度;加n+和p+保护环;采用p-外延工艺;采用SOISilicon On InsulatorCMOS工艺。42体硅体硅CMOSCMOS中的闩锁效应中的闩锁效应43闩锁效应闩锁效应:等效电路等效电路Q1Q2Q3Q4VoutVoutRwRs44防止闩锁效应防止闩锁效应的措施的措施1.减小阱区和衬底的寄生电阻减小阱区和衬底的寄生电阻 2.降低寄生双极晶体管的增益降低寄生双极晶体管的增益 3.使衬底加反向偏压使衬底加反向偏压 4.加保护环加保护环5.用外延衬底用外延衬底6.采用采用SOICMOS技术技术 45抑制闩锁效应:抑制闩锁效应:n1、减小寄生电阻、减小寄生电阻n2、降低寄生晶体管增益、降低寄生晶体管增益n3、衬底加反向偏压、衬底加反向偏压464、保护环、保护环475、外延衬底、外延衬底6.1 CMOS工艺6.1.1 基本工艺步骤6.1.2 n阱CMOS工艺流程6.1.3 硅基CMOS中的闩锁效应6.1.4 先进的CMOS工艺49深亚微米深亚微米CMOS结构和工艺结构和工艺50 深亚微米深亚微米CMOS工艺的主要改进工艺的主要改进浅沟槽隔离浅沟槽隔离双阱工艺双阱工艺非均匀沟道掺杂非均匀沟道掺杂 n+/p+两种硅栅两种硅栅极浅的源漏延伸区极浅的源漏延伸区硅化物自对准栅硅化物自对准栅-源源-漏结构漏结构多层铜互连多层铜互连511、浅沟槽隔离、浅沟槽隔离 常规常规CMOSCMOS工艺中的工艺中的LOCOSLOCOS隔离的缺点隔离的缺点外表有较大的不平整度外表有较大的不平整度 鸟嘴使实际有源区面积减小鸟嘴使实际有源区面积减小 高温氧化热应力也会对硅片造成损伤和变形高温氧化热应力也会对硅片造成损伤和变形浅沟槽隔离的优势浅沟槽隔离的优势占用的面积小,有利于提高集成密度占用的面积小,有利于提高集成密度 不会形成鸟嘴不会形成鸟嘴 用用CVDCVD淀积绝缘层从而减少了高温过程淀积绝缘层从而减少了高温过程 52浅沟槽隔离浅沟槽隔离STI光刻胶氮化硅abcd53STI抑制抑制窄沟效应窄沟效应542、外延双阱工艺、外延双阱工艺 常规单阱常规单阱CMOS工艺,阱区浓度较高,使阱内的工艺,阱区浓度较高,使阱内的器件有较大的衬偏系数和源、漏区器件有较大的衬偏系数和源、漏区pn结电容结电容 采用外延双阱工艺的好处采用外延双阱工艺的好处由于外延层电阻率很高,可以分别根据由于外延层电阻率很高,可以分别根据NMOSNMOS和和PMOSPMOS性性能优化要求选择适当的能优化要求选择适当的n n阱和阱和p p阱浓度阱浓度 做在阱内的器件可以减少受到做在阱内的器件可以减少受到粒子辐射的影响粒子辐射的影响 外延衬底有助于抑制体硅外延衬底有助于抑制体硅CMOSCMOS中的寄生闩锁效应中的寄生闩锁效应 55 3 沟道区的逆向掺杂和环绕掺杂结构沟道区的逆向掺杂和环绕掺杂结构n沟道掺杂原子数的随机涨落引起器件阈值电压参数起伏,因此希望沟道外表低掺杂;体内需要高掺杂抑制穿通电流n逆向掺杂技术利用纵向非均匀衬底掺杂,抑制短沟穿通电流n环绕掺杂技术利用横向非均匀掺杂,在源漏区形成局部高掺杂区56逆向掺杂逆向掺杂n逆向掺杂杂质分布n0.25um工艺100个NMOS器件阈值电压统计结果n器件阈值分布的标准差减小57逆向掺杂:逆向掺杂:Delta沟道技沟道技术术nPMOS沟道区As离子注入nNMOS注硼,硼的氧化增强扩散效应影响杂质分布nDelta沟道技术可以获得较陡峭的纵向低高掺杂分布58横向沟道工程:横向沟道工程:HALO掺杂结构掺杂结构n横向高掺杂区可以抑制源漏pn结耗尽区向沟道内的扩展,减小短沟效应nHalo结构可以利用大角度注入实现59横向沟道工程:横向沟道工程:POCKET掺杂结构掺杂结构604 4、n n、p p两种硅栅两种硅栅 在在CMOS电路中希望电路中希望NMOS和和PMOS的性能对称,这样有的性能对称,这样有利于获得最正确电路性能利于获得最正确电路性能 使使NMOS和和PMOS性能对称很重要的一点是使它们的阈值性能对称很重要的一点是使它们的阈值电压绝对值基本相同电压绝对值基本相同 在同样条件下,如果在同样条件下,如果NMOS和和PMOS都选用都选用n+硅栅,则硅栅,则PMOS的负阈值电压绝对值要比的负阈值电压绝对值要比NMOS的阈值电压大很多的阈值电压大很多 PMOS采用采用p硅栅减小其阈值电压的绝对值,从而获得硅栅减小其阈值电压的绝对值,从而获得和和NMOS采用采用n硅栅对称的性能硅栅对称的性能 615 5、SDESDE结构结构 减小源漏区结深有利于抑制短减小源漏区结深有利于抑制短沟效应。沟效应。问题:问题:简单地减小源、漏区结简单地减小源、漏区结深将使源、漏区寄生电阻增大深将使源、漏区寄生电阻增大造成造成MOSMOS晶体管性能退化晶体管性能退化!解决方法:解决方法:使用使用SDESDE结构,在结构,在沟道两端形成极浅的源、漏延沟道两端形成极浅的源、漏延伸区伸区。62SDESDE结深减小趋势结深减小趋势636、硅化物自对准结构、硅化物自对准结构 在栅极两侧形成一定厚在栅极两侧形成一定厚度的氧化硅或氮化硅侧度的氧化硅或氮化硅侧墙,然后淀积难熔金属墙,然后淀积难熔金属并和硅反响形成硅化物并和硅反响形成硅化物作用:作用:减小多晶硅线和减小多晶硅线和源、漏区的寄生电阻;源、漏区的寄生电阻;减小金属连线与源、漏减小金属连线与源、漏区引线孔的接触电阻区引线孔的接触电阻硅化物同时淀积在栅电极上和暴露的源、漏区上,因此是自对准结构647、铜互连、铜互连 铜比铝的电阻率低铜比铝的电阻率低4040左右。用铜互连代替铝互连可以显左右。用铜互连代替铝互连可以显著减小互连线的寄生电阻从而减小互连线的著减小互连线的寄生电阻从而减小互连线的RCRC延迟延迟 铜易于扩散到硅中,会影响器件性能;铜还会对加工设备铜易于扩散到硅中,会影响器件性能;铜还会对加工设备造成污染,因此铜互连不能用常规的淀积和干法刻蚀方法造成污染,因此铜互连不能用常规的淀积和干法刻蚀方法形成形成 铜互连技术特点:铜互连技术特点:显著减小互连线的寄生电阻显著减小互连线的寄生电阻与低与低k k介质材料结合减小寄生电容,提高电路性能介质材料结合减小寄生电容,提高电路性能需要特殊的工艺技术:需要特殊的工艺技术:“镶嵌镶嵌大马士革技术和化大马士革技术和化学机械抛光技术学机械抛光技术65常规互连和镶嵌工艺比较常规互连和镶嵌工艺比较 氧化层光刻胶金属66采用铜互连可以减少连线层采用铜互连可以减少连线层数数67 先进深亚微米先进深亚微米CMOSCMOS工工艺过程艺过程 68 先进深亚微米先进深亚微米CMOSCMOS工艺工艺过程续过程续 6990nm CMOS90nm CMOS技术平台的主要技术平台的主要指标指标 参数参数一般器件一般器件低功耗器件低功耗器件低低阈值阈值常常规阈值规阈值低低阈值阈值常常规阈值规阈值电源电压VDDV1.01.01.21.2LG7090Toxnm1.62.1NMOS IonuA/um640520540415NMOS IoffnA/um1010.40.01NMOS JGA/cm220.005PMOS IonuA/um280215250170PMOS IoffnA/um1010.40.01PMOS JGA/cm210.002第6章 CMOS集成电路制造工艺6.1 CMOS工艺6.2 CMOS幅员设计6.3 SOI工艺71违背幅员设计规则的结违背幅员设计规则的结果果6.2 CMOS幅员设计幅员设计规则代表了一种容差要求,这种容差要求可保证最高的成品率。1 以为单位的设计规则幅员设计中各种几何尺寸限制约定为的倍数;根据不同的工艺分辨率,给出相容的值;幅员设计可以独立于工艺和实际尺寸。图图形形层层次次设计规则设计规则内容内容几何尺寸要求几何尺寸要求n阱NW1最小宽度10NW2.1等电位n阱最小间距6NW2.2不等电位n阱最小间距9有源区AA1最小宽度3AA2最小间距3AA3n阱内p+有源区到n阱边界最小间距5AA4n阱外n+有源区与n阱最小间距56.2 CMOS幅员设计1 以为单位的设计规则图图形形层层次次设计规则设计规则内容内容几何尺寸要求几何尺寸要求多晶硅GT1最小宽度2GT2最小间距2GT3伸出有源区外的最小长度2GT4硅栅到有源区边界的最小距离3GT5与有源区的最小外间距1注入框SN1最小宽度5SN2最小间距2SN3对有源区的最小覆盖2接触孔CT1CT1最小接触孔面积22CT2最小间距2CT3有源区或多晶硅对接触孔的最小覆盖1.5CT4有源区接触孔到多晶硅栅的最小间距2CT5多晶硅接触孔到有源区的最小间距2CT6金属对接触孔的最小覆盖1金属M1最小线宽3M2最小间距36.2 CMOS幅员设计2 以微米为单位的设计规则每个尺寸之间没有必然的比例关系,各尺寸之间可以独立选择;灵活性大,针对性强;通用性差。图图形形层层次次设计规则设计规则内容内容几何尺寸要求几何尺寸要求n阱NW1最小宽度0.6mNW2等电位n阱最小间距0.6mNW3不等电位n阱最小间距1.2m有源区AA1最小宽度0.15mAA2最小间距0.2mAA3n阱内p+有源区到阱边界最小间距0.3mAA4n阱外n+有源区与阱最小间距0.3mAA5n阱至阱外p+区的最小间隔0.3mAA6n阱至阱外n+区的最小间隔0.3m6.2 CMOS幅员设计2 以微米为单位的设计规则图图形形层层次次设计规则设计规则内容内容几何尺寸要求几何尺寸要求多晶硅GT1最小宽度0.13mGT2最小间距0.18mGT3伸出有源区外的最小长度0.18mGT4有源区外多晶硅与有源区边界的最小距离0.25mGT5有源区上多晶硅与有源区边界的最小距离0.20mGT6与有源区的最小外间距0.07m注入框SN1最小宽度0.3mSN2最小间距0.3mSN3对有源区的最小覆盖0.18m接触孔CT1CT1最小面积0.16m0.16mCT2最小间距0.18mCT3有源区或多晶硅对接触孔的最小覆盖0.07mCT4有源区接触孔到多晶硅栅的最小间距0.1mCT5多晶硅接触孔到有源区的最小间距0.15mCT6金属对接触孔的最小覆盖0.05m6.2 CMOS幅员设计2 以微米为单位的设计规则图图形形层层次次设计规则设计规则内容内容几何尺寸要求几何尺寸要求金属Mn1最小线宽0.16mMn2最小间距0.18m通孔Vn1Vn1最小面积0.18m0.18mVn2最小间距0.2mVn3金属对通孔的最小覆盖0.05m压焊块PA1最小面积60m60mPA2最小间距90m6.2 CMOS幅员设计6.2 CMOS幅员设计四输入与门幅员与幅员设计规则所对应的相关尺寸幅员设计完成后,需要进行设计规则检查Design Rule Check,DRC。第6章 CMOS集成电路制造工艺6.1 CMOS工艺6.2 CMOS幅员设计6.3 SOI工艺802.3.2 SOI CMOS基本工艺基本工艺SOI结构结构SOI工艺工艺SOI优点优点81SOI CMOSSOI CMOS结构结构 1.体区和衬底隔离。体电位是浮空会引起浮体效应。需专门设计体区和衬底隔离。体电位是浮空会引起浮体效应。需专门设计体区的引出端。体区的引出端。2.2.衬底相对沟道区也相当于一个衬底相对沟道区也相当于一个MOSMOS结构,因此也把结构,因此也把SOI MOSFET SOI MOSFET 的衬底又叫做背栅的衬底又叫做背栅,是五端器件是五端器件 。82SOI MOSFETSOI MOSFET的性能的性能 厚膜器件厚膜器件tsi2xdm。背。背栅对栅对MOSFET性能基本没有影响,性能基本没有影响,和体硅和体硅MOS器件基本相同器件基本相同 薄膜器件薄膜器件 tsixdm。在栅电压的作用下可以使顶层硅膜全部耗尽。在栅电压的作用下可以使顶层硅膜全部耗尽 可以通过减薄硅膜抑制短沟道效应可以通过减薄硅膜抑制短沟道效应 83形成形成SOI SOI 硅片的基本工艺硅片的基本工艺 1 注氧隔离技术注氧隔离技术SIMOX 通过高能量、大剂量注氧在硅中形成埋氧化层.O+的剂量在1.81018cm-2左右;能量200kev 埋氧化层把原始硅片分成2局部,上面的薄层硅用来做器件,下面是硅衬底 84形成形成SOI SOI 硅片的基本工艺硅片的基本工艺 2 键合减薄技术键合减薄技术BE 把2个生长了氧化层的硅片键合在一起,两个氧化层通过键合粘在一起成为埋氧化层 其中一个硅片腐蚀抛光减薄成为做器件的薄硅膜,另一个硅片作为支撑的衬底 85形成形成SOI SOI 硅片的基本工艺硅片的基本工艺 3 智能剥离技智能剥离技术术smart cut 解决了如何用键合技术形成薄膜SOI材料 可以形成高质量的薄硅膜SOI材料 8687 基于台面隔离的基于台面隔离的SOI CMOSSOI CMOS基本工艺流程基本工艺流程 8889SOI CMOSSOI CMOS的优越性的优越性 1.1.每个器件都被氧化层包围,完全与周围的器件隔离,从根本每个器件都被氧化层包围,完全与周围的器件隔离,从根本上消除了闩锁效应;上消除了闩锁效应;2.2.减小了减小了pn结电容和互连线寄生电容结电容和互连线寄生电容 3.3.不用做阱,简化工艺,减小面积不用做阱,简化工艺,减小面积4.4.极大减小了源、漏区极大减小了源、漏区pn结面积,从而减小了结面积,从而减小了pn结泄漏电流结泄漏电流 5.5.有利于抑制短沟效应;有利于抑制短沟效应;6.6.有很好的抗幅照性能;有很好的抗幅照性能;7.7.实现三维立体集成。实现三维立体集成。90SOISOI技技术实现术实现三维立三维立体集成体集成 91SOI CMOS反相器结构反相器结构92 SOI 与体硅与体硅CMOS性能比较性能比较

    注意事项

    本文([精选]第6章CMOS集成电路制造工艺.pptx)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开