欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023年《数学广角——鸽巢问题》精品教案1.pdf

    • 资源ID:87987600       资源大小:224.45KB        全文页数:4页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023年《数学广角——鸽巢问题》精品教案1.pdf

    学习必备 欢迎下载 数学广角鸽巢问题第 1 课时教学设计 【教学目标】1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。【教学重难点】重点:引导学生把具体问题转化成“鸽巢问题”。难点:找出“鸽巢问题”解决的窍门进行反复推理。【教学过程】一、情境导入 教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。(板书课题:鸽巢问题)教师:通过学习,你想解决哪些问题?根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题?二、探究新知:1.教学例 1.(课件出示例题 1 情境图)思考问题:把 4 支铅笔放进 3 个笔筒中,不管怎么放,总有 1 个笔筒里至少有 2 支铅笔。为什么呢?“总有”和“至少”是什么意思?学习必备 欢迎下载 学生通过操作发现规律理解关键词的含义探究证明认识“鸽巢问题”的学习过程来解决问题。(1)操作发现规律:通过把 4 支铅笔放进 3 个笔筒中,可以发现:不管怎么放,总有 1 个笔筒里至少有 2 支铅笔。(2)理解关键词的含义:“总有”和“至少”是指把 4 支铅笔放进 3 个笔筒中,不管怎么放,一定有 1 个笔筒里的铅笔数大于或等于 2 支。(3)探究证明。方法一:用“枚举法”证明。方法二:用“分解法”证明。把 4 分解成 3 个数。由图可知,把 4 分解成 3 个数,与枚举法相似,也有 4 中情况,每一种情况分得的 3 个数中,至少有 1 个数是不小于 2 的数。方法三:用“假设法”证明。通过以上几种方法证明都可以发现:把 4 只铅笔放进 3 个笔筒中,无论怎么放,总有 1 个笔筒里至少放进 2 只铅笔。(4)认识“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4 支铅笔是要分放的物体,就相当于 4 只“鸽子”,“3 个笔筒”就相当于 3 个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把 4 只鸽子放进3 个笼子,总有 1 个笼子里至少有 2 只鸽子。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。小结:只要放的铅笔数比笔筒的数量多,就总有 1 个笔筒里至少放进 2支铅笔。如果放的铅笔数比笔筒的数量多 2,那么总有 1 个笔筒至少放 2 支铅笔;如果放的铅笔比笔筒的数量多 3,那么总有 1 个笔筒里至少放 2 只铅笔 小结:只要放的铅笔数比笔筒的数量多,就总有 1 个笔筒里至少放 2支铅笔。的学习方法渗透数形结合的思想情感态度和价值观通过用鸽巢问题解决学过程一情境导入教师同学们你们在一些公共场或旅游景点见过电脑算明这种电脑算命是非常可笑和荒唐的是不可相信的鬼把戏了板书课题鸽学习必备 欢迎下载(5)归纳总结:鸽巢原理(一):如果把 m个物体任意放进 n 个抽屉里(mn,且 n 是非零自然数),那么一定有一个抽屉里至少放进了放进了 2 个物体。2、教学例 2(课件出示例题 2 情境图)思考问题:(一)把 7 本书放进 3 个抽屉,不管怎么放,总有 1 个抽屉里至少有 3 本书。为什么呢?(二)如果有 8 本书会怎样呢?10 本书呢?学生通过“探究证明得出结论”的学习过程来解决问题(一)。(1)探究证明。方法一:用数的分解法证明。把 7 分解成 3 个数的和。把 7 本书放进 3 个抽屉里,共有如下 8 种情况:由图可知,每种情况分得的 3 个数中,至少有 1 个数不小于 3,也就是每种分法中最多那个数最小是 3,即总有 1 个抽屉至少放进 3 本书。方法二:用假设法证明。把 7 本书平均分成 3 份,73=2(本).1(本),若每个抽屉放 2本,则还剩 1 本。如果把剩下的这 1 本书放进任意 1 个抽屉中,那么这个抽屉里就有 3 本书。(2)得出结论。通过以上两种方法都可以发现:7 本书放进 3 个抽屉中,不管怎么放,总有 1 个抽屉里至少放进 3 本书。学生通过“假设分析法归纳总结”的学习过程来解决问题(二)。(1)用假设法分析。83=2(本).2(本),剩下 2 本,分别放进其中 2 个抽屉中,使其中 2 个抽屉都变成 3 本,因此把 8 本书放进 3 个抽屉中,不管怎么放,总有 1 个抽屉里至少放进 3 本书。103=3(本).1(本),把 10 本书放进 3 个抽屉中,不管怎么放,总有 1 个抽屉里至少放进 4 本书。(2)归纳总结:的学习方法渗透数形结合的思想情感态度和价值观通过用鸽巢问题解决学过程一情境导入教师同学们你们在一些公共场或旅游景点见过电脑算明这种电脑算命是非常可笑和荒唐的是不可相信的鬼把戏了板书课题鸽学习必备 欢迎下载 综合上面两种情况,要把 a 本书放进 3 个抽屉里,如果 a3=b(本).1(本)或 a3=b(本).2(本),那么一定有 1 个抽屉里至少放进(b+1)本书。鸽巢原理(二):我们把多余 kn 个的物体任意分别放进 n 个空抽屉(k是正整数,n 是非 0 的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。三、巩固练习 1、完成教材第 70 页的“做一做”第 1 题。学生独立思考解答问题,集体交流、纠正。2、完成教材第 71 页练习十三的 1-2 题。学生独立思考解答问题,集体交流、纠正。四、课堂总结 今天这节课你有什么收获?能说给大家听听吗?的学习方法渗透数形结合的思想情感态度和价值观通过用鸽巢问题解决学过程一情境导入教师同学们你们在一些公共场或旅游景点见过电脑算明这种电脑算命是非常可笑和荒唐的是不可相信的鬼把戏了板书课题鸽

    注意事项

    本文(2023年《数学广角——鸽巢问题》精品教案1.pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开