广西防城岗市防城区达标名校2023年中考数学模拟精编试卷含解析.doc
-
资源ID:87993040
资源大小:779.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广西防城岗市防城区达标名校2023年中考数学模拟精编试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1若直线y=kx+b图象如图所示,则直线y=bx+k的图象大致是( )ABCD2如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是(),SABC=1,OF=5,点B的坐标为(2,2.5)A1个B2个C3个D4个3如图,在ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A5048B2548C5024D4关于x的一元二次方程(m2)x2+(2m1)x+m20有两个不相等的正实数根,则m的取值范围是()AmBm且m2Cm2Dm25如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()ABCD6在3,1,0,1四个数中,比2小的数是()A3B1C0D17下列四个多项式,能因式分解的是()Aa1Ba21Cx24yDx26x98下列运算正确的是()Axx4=x5Bx6÷x3=x2C3x2x2=3D(2x2)3=6x69如图,在ABC中,AC=BC,ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A4B5C6D710半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A3B4CD二、填空题(本大题共6个小题,每小题3分,共18分)11在直角坐标系中,坐标轴上到点P(3,4)的距离等于5的点的坐标是12如图,ABCD中,ACCD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N若AC=9cm,OA=3cm,则图中阴影部分的面积为_cm113若m+=3,则m2+=_14分解因式:2a44a2+2_15()2(3.14)0_16如图,在平面直角坐标系中,抛物线可通过平移变换向_得到抛物线,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是_三、解答题(共8题,共72分)17(8分)如图,点E、F在BC上,BE=CF,AB=DC,B=C,AF与DE交于点G,求证:GE=GF18(8分)计算:(2)0+|1|+2cos30°19(8分)如图,在顶点为P的抛物线y=a(x-h)2+k(a0)的对称轴1的直线上取点A(h,k+),过A作BCl交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线ml又分别过点B,C作直线BEm和CDm,垂足为E,D在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形(1)直接写出抛物线y=x2的焦点坐标以及直径的长(2)求抛物线y=x2-x+的焦点坐标以及直径的长(3)已知抛物线y=a(x-h)2+k(a0)的直径为,求a的值(4)已知抛物线y=a(x-h)2+k(a0)的焦点矩形的面积为2,求a的值直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值20(8分)如图,ACB与ECD都是等腰直角三角形,ACB=ECD=90°,点D为AB边上的一点,(1)求证:ACEBCD;(2)若DE=13,BD=12,求线段AB的长21(8分)已知如图,在ABC中,B45°,点D是BC边的中点,DEBC于点D,交AB于点E,连接CE(1)求AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论22(10分)如图,在ABC中,AB=AC,D为BC的中点,DEAB,DFAC,垂足分别为E、F,求证:DE=DF23(12分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC直线l,BCE=71°,CE=54cm(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E,求EE的长(结果精确到0.1cm)(参考数据:sin71°0.95,cos71°0.33,tan71°2.90)24已知二次函数 ymx22mx+n 的图象经过(0,3)(1)n _;(2) 若二次函数 ymx22mx+n 的图象与 x 轴有且只有一个交点,求 m 值;(3) 若二次函数 ymx22mx+n 的图象与平行于 x 轴的直线 y5 的一个交点的横坐标为4,则另一个交点的坐标为 ;(4) 如图,二次函数 ymx22mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求PAC 面积的最大值参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据一次函数y=kx+b的图象可知k1,b1,再根据k,b的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,即可判断【详解】解:一次函数y=kx+b的图象可知k1,b1,-b1,一次函数y=bx+k的图象过一、二、三象限,与y轴的正半轴相交,故选:A【点睛】本题考查了一次函数的图象与系数的关系函数值y随x的增大而减小k1;函数值y随x的增大而增大k1;一次函数y=kx+b图象与y轴的正半轴相交b1,一次函数y=kx+b图象与y轴的负半轴相交b1,一次函数y=kx+b图象过原点b=12、C【解析】如图,由平行线等分线段定理(或分线段成比例定理)易得:;设过点B且与y轴平行的直线交AC于点G,则SABC=SAGB+SBCG,易得:SAED,AEDAGB且相似比=1,所以,AEDAGB,所以,SAGB,又易得G为AC中点,所以,SAGB=SBGC=,从而得结论;易知,BG=DE=1,又BGCFEC,列比例式可得结论;易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以错误【详解】解:如图,OEAA'CC',且OA'=1,OC'=1,故 正确;设过点B且与y轴平行的直线交AC于点G(如图),则SABC=SAGB+SBCG,DE=1,OA'=1,SAED=×1×1=,OEAA'GB',OA'=A'B',AE=AG,AEDAGB且相似比=1,AEDAGB,SABG=,同理得:G为AC中点,SABG=SBCG=,SABC=1,故 正确;由知:AEDAGB,BG=DE=1,BGEF,BGCFEC,EF=1即OF=5,故正确;易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故错误;故选C【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力考查学生数形结合的数学思想方法3、B【解析】设以AB、AC为直径作半圆交BC于D点,连AD,如图,ADBC,BD=DC=BC=8,而AB=AC=10,CB=16,AD=6,阴影部分面积=半圆AC的面积+半圆AB的面积ABC的面积,=52166,=251故选B4、D【解析】根据一元二次方程的根的判别式的意义得到m20且(2m1)24(m2)(m2) 0,解得m且m2,再利用根与系数的关系得到, m20,解得m2,即可求出答案【详解】解:由题意可知:m20且(2m1)24(m2)212m150,m且m2,(m2)x2+(2m1)x+m20有两个不相等的正实数根,0,m20,m2,m,m2,故选:D【点睛】本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键5、C【解析】由正方形的性质知DG=CG-CD=2、ADGF,据此证ADMFGM得 , 求出GM的长,再利用勾股定理求解可得答案【详解】解:四边形ABCD和四边形CEFG是正方形,AD=CD=BC=1、CE=CG=GF=3,ADM=G=90°,DG=CG-CD=2,ADGF,则ADMFGM,即 ,解得:GM= ,FM= = = ,故选:C【点睛】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点6、A【解析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案【详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A【点睛】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.7、D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可试题解析:x2-6x+9=(x-3)2故选D考点:2因式分解-运用公式法;2因式分解-提公因式法8、A【解析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、xx4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误故选A9、B【解析】试题解析:过点C作COAB于O,延长CO到C,使OC=OC,连接DC,交AB于P,连接CP此时DP+CP=DP+PC=DC的值最小DC=1,BC=4,BD=3,连接BC,由对称性可知CBE=CBE=41°,CBC=90°,BCBC,BCC=BCC=41°,BC=BC=4,根据勾股定理可得DC=1故选B10、C【解析】如图所示:过点O作ODAB于点D,OB=3,AB=4,ODAB,BD=AB=×4=2,在RtBOD中,OD=故选C二、填空题(本大题共6个小题,每小题3分,共18分)11、(0,0)或(0,8)或(6,0)【解析】由P(3,4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个【详解】解:P(3,4)到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,8)或(6,0)故答案是:(0,0)或(0,8)或(6,0)12、11【解析】阴影部分的面积=扇形ECF的面积-ACD的面积-OCM的面积-扇形AOM的面积-弓形AN的面积【详解】解:连接OM,ON.OM=3,OC=6, 扇形ECF的面积 ACD的面积 扇形AOM的面积 弓形AN的面积 OCM的面积 阴影部分的面积=扇形ECF的面积ACD的面积OCM的面积扇形AOM的面积弓形AN的面积 故答案为【点睛】考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.13、7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案详解:把m+=3两边平方得:(m+)2=m2+2=9,则m2+=7,故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键14、1(a+1)1(a1)1【解析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式1(a41a1+1)1(a11)11(a+1)1(a1)1,故答案为:1(a+1)1(a1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式15、3.【解析】试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果原式=4-1=3.考点:负整数指数幂;零指数幂16、先向右平移2个单位再向下平移2个单位; 4 【解析】.平移后顶点坐标是(2,-2),利用割补法,把x轴上方阴影部分补到下方,可以得到矩形面积,面积是.三、解答题(共8题,共72分)17、证明见解析.【解析】【分析】求出BF=CE,根据SAS推出ABFDCE,得对应角相等,由等腰三角形的判定可得结论【详解】BE=CF,BE+EF=CF+EF,BF=CE,在ABF和DCE中,ABFDCE(SAS),GEF=GFE,EG=FG【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键18、【解析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果【详解】原式,【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键19、(1)4(1)4(3)(4)a=±;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,【解析】(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;(1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;(3)根据题意和y=a(x-h)1+k(a0)的直径为,可以求得a的值;(4)根据题意和抛物线y=ax1+bx+c(a0)的焦点矩形的面积为1,可以求得a的值;根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值【详解】(1)抛物线y=x1,此抛物线焦点的横坐标是0,纵坐标是:0+=1,抛物线y=x1的焦点坐标为(0,1),将y=1代入y=x1,得x1=-1,x1=1,此抛物线的直径是:1-(-1)=4;(1)y=x1-x+=(x-3)1+1,此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,焦点坐标为(3,3),将y=3代入y=(x-3)1+1,得3=(x-3)1+1,解得,x1=5,x1=1,此抛物线的直径时5-1=4;(3)焦点A(h,k+),k+=a(x-h)1+k,解得,x1=h+,x1=h-,直径为:h+-(h-)=,解得,a=±,即a的值是;(4)由(3)得,BC=,又CD=A'A=所以,S=BCCD=1解得,a=±;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点由图可知,公共点个数随m的变化关系为当m1-时,无公共点;当m=1-时,1个公共点;当1-m1时,1个公共点;当1m5时,3个公共点;当5m5+时,1个公共点;当m=5+时,1个公共点;当m5+时,无公共点;由上可得,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点【点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答20、(3)证明见解析; (3)AB=3.【解析】(3)由等腰直角三角形得出AC=BC,CE=CD,ACB=ECD=90°,得出BCD=ACE,根据SAS推出ACEBCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在RtAED中,由勾股定理求出DE即可【详解】证明:(3)如图,ACB与ECD都是等腰直角三角形,AC=BC,CE=CD,ACB=ECD=90°,ACBACD=DCEACD,BCD=ACE,在BCD和ACE中,BC=AC,BCD=ACE,CD=CE,BCDACE(SAS);(3)由(3)知BCDACE,则DBC=EAC,AE=BD=33,CAD+DBC=90°,EAC+CAD=90°,即EAD=90°,AE=33,ED=33,AD=5,AB=AD+BD=33+5=3【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3全等三角形的判定与性质;3等腰直角三角形21、(1)90°;(1)AE1+EB1AC1,证明见解析【解析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EBEC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答【详解】解:(1)点D是BC边的中点,DEBC,DE是线段BC的垂直平分线,EBEC,ECBB45°,AECECB+B90°;(1)AE1+EB1AC1AEC90°,AE1+EC1AC1,EBEC,AE1+EB1AC1【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键22、答案见解析【解析】由于AB=AC,那么B=C,而DEAC,DFAB可知BFD=CED=90°,又D是BC中点,可知BD=CD,利用AAS可证BFDCED,从而有DE=DF23、(1)81cm;(2)8.6cm;【解析】(1)作EMBC于点M,由EM=ECsinBCE可得答案;(2)作EHBC于点H,先根据EC=求得EC的长度,再根据EE=CECE可得答案【详解】(1)如图1,过点E作EMBC于点M由题意知BCE=71°、EC=54,EM=ECsinBCE=54sin71°51.3,则单车车座E到地面的高度为51.3+3081cm;(2)如图2所示,过点E作EHBC于点H由题意知EH=70×0.85=59.5,则EC=62.6,EE=CECE=62.654=8.6(cm)【点睛】本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答24、(2)2;(2)m=2;(2)(2,5);(4)当a=时,PAC的面积取最大值,最大值为【解析】(2)将(0,-2)代入二次函数解析式中即可求出n值;(2)由二次函数图象与x轴只有一个交点,利用根的判别式=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PDx轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出SACP关于a的函数关系式,配方后即可得出PAC面积的最大值【详解】解:(2)二次函数y=mx22mx+n的图象经过(0,2),n=2故答案为2(2)二次函数y=mx22mx2的图象与x轴有且只有一个交点,=(2m)24×(2)m=4m2+22m=0,解得:m2=0,m2=2m0,m=2(2)二次函数解析式为y=mx22mx2,二次函数图象的对称轴为直线x=2该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,另一交点的横坐标为2×24=2,另一个交点的坐标为(2,5)故答案为(2,5)(4)二次函数y=mx22mx2的图象经过点A(2,0),0=9m6m2,m=2,二次函数解析式为y=x22x2设直线AC的解析式为y=kx+b(k0),将A(2,0)、C(0,2)代入y=kx+b,得:,解得:,直线AC的解析式为y=x2过点P作PDx轴于点D,交AC于点Q,如图所示设点P的坐标为(a,a22a2),则点Q的坐标为(a,a2),点D的坐标为(a,0),PQ=a2(a22a2)=2aa2,SACP=SAPQ+SCPQ=PQOD+PQAD=a2+a=(a)2+,当a=时,PAC的面积取最大值,最大值为 【点睛】本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出SACP关于a的函数关系式