广西玉林博白县市级名校2023届中考二模数学试题含解析.doc
-
资源ID:87993047
资源大小:2.08MB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广西玉林博白县市级名校2023届中考二模数学试题含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1下列各式中,正确的是()A(xy)=xyB(2)1=CD2如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )ABCD3分式方程的解为( )Ax=-2Bx=-3Cx=2Dx=34若ABCABC,A=40°,C=110°,则B等于( )A30°B50°C40°D70°50.2的相反数是()A0.2B±0.2C0.2D26如图,ABC是O的内接三角形,AC是O的直径,C=50°,ABC的平分线BD交O于点D,则BAD的度数是( )A45°B85°C90°D95°7下列图形中既是中心对称图形又是轴对称图形的是( )ABCD8花园甜瓜是乐陵的特色时令水果甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为()kgA180B200C240D3009若(x1)01成立,则x的取值范围是()Ax1Bx1Cx0Dx110九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在圆心角为90°的扇形OAB中,半径OA=1cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_cm112如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,则折痕EF的长为_13一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为_14在ABCD中,AB=3,BC=4,当ABCD的面积最大时,下列结论:AC=5;A+C=180o;ACBD;AC=BD其中正确的有_(填序号)15若式子在实数范围内有意义,则x的取值范围是_16已知关于x的一元二次方程mx2+5x+m22m=0有一个根为0,则m=_三、解答题(共8题,共72分)17(8分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?18(8分)如图,点A,B,C都在抛物线y=ax22amx+am2+2m5(其中a0)上,ABx轴,ABC=135°,且AB=1(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);(2)求ABC的面积(用含a的代数式表示);(3)若ABC的面积为2,当2m5x2m2时,y的最大值为2,求m的值19(8分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角. 20(8分)已知:如图,在梯形ABCD中,ABCD,D90°,ADCD2,点E在边AD上(不与点A、D重合),CEB45°,EB与对角线AC相交于点F,设DEx(1)用含x的代数式表示线段CF的长;(2)如果把CAE的周长记作CCAE,BAF的周长记作CBAF,设y,求y关于x的函数关系式,并写出它的定义域;(3)当ABE的正切值是 时,求AB的长21(8分)如图,在RtABC中,ACB=90°,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿CAB以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作O(1)当时,求PCQ的面积;(2)设O的面积为s,求s与t的函数关系式;(3)当点Q在AB上运动时,O与RtABC的一边相切,求t的值22(10分) (1)如图,四边形为正方形,那么与相等吗?为什么?(2)如图,在中,为边的中点,于点,交于,求的值(3)如图,中,为边的中点,于点,交于,若,求.23(12分)阅读材料:已知点和直线,则点P到直线的距离d可用公式计算.例如:求点到直线的距离 解:因为直线可变形为,其中,所以点到直线的距离为:.根据以上材料,求:点到直线的距离,并说明点P与直线的位置关系;已知直线与平行,求这两条直线的距离24解不等式组:,并把解集在数轴上表示出来.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】A.括号前是负号去括号都变号; B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法【详解】A选项,(xy)=x+y,故A错误;B选项, (2)1=,故B正确;C选项,故C错误;D选项,22,故D错误【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键2、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案详解:A、BC=BC,AD=BC,AD=BC,所以A正确B、CBD=EDB,CBD=EBD,EBD=EDB,所以B正确D、sinABE=,EBD=EDBBE=DEsinABE=由已知不能得到ABECBD故选C点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法3、B【解析】解:去分母得:2x=x3,解得:x=3,经检验x=3是分式方程的解故选B4、A【解析】利用三角形内角和求B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:B=30°,根据相似三角形的性质可得:B=B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.5、A【解析】根据相反数的定义进行解答即可.【详解】负数的相反数是它的绝对值,所以0.2的相反数是0.2.故选A.【点睛】本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.6、B【解析】解:AC是O的直径,ABC=90°,C=50°,BAC=40°,ABC的平分线BD交O于点D,ABD=DBC=45°,CAD=DBC=45°,BAD=BAC+CAD=40°+45°=85°,故选B【点睛】本题考查圆周角定理;圆心角、弧、弦的关系7、C【解析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.8、B【解析】根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.【详解】解:设小李所进甜瓜的数量为,根据题意得:,解得:,经检验是原方程的解答:小李所进甜瓜的数量为200kg故选:B【点睛】本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.9、D【解析】试题解析:由题意可知:x-10,x1故选D.10、B【解析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:故选B点睛:本题考查了一元一次方程的应用找准等量关系,列方程是关键二、填空题(本大题共6个小题,每小题3分,共18分)11、+【解析】试题分析:如图,连接OC,EC,由题意得OCDOCE,OCDE,DE=,所以S四边形ODCE=×1×=,SOCD=,又SODE=×1×1=,S扇形OBC=,所以阴影部分的面积为:S扇形OBC+SOCDSODE=+;故答案为考点:扇形面积的计算12、【解析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,四边形ABCD是矩形,设,则,在中,即,由折叠的性质可得:,故答案为【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用13、1.【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)÷7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错14、【解析】由当ABCD的面积最大时,ABBC,可判定ABCD是矩形,由矩形的性质,可得正确,错误,又由勾股定理求得AC=1【详解】当ABCD的面积最大时,ABBC,ABCD是矩形,A=C=90°,AC=BD,故错误,正确;A+C=180°;故正确;AC=1,故正确故答案为:【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理注意证得ABCD是矩形是解此题的关键15、x1【解析】分式有意义的条件是分母不等于零【详解】式子在实数范围内有意义,x+10,解得:x-1故答案是:x-1【点睛】考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键16、1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可【详解】关于x的一元二次方程mx1+5x+m11m=0有一个根为0,m11m=0且m0,解得,m=1,故答案是:1【点睛】本题考查了一元二次方程ax1+bx+c=0(a0)的解的定义解答该题时需注意二次项系数a0这一条件三、解答题(共8题,共72分)17、自行车的速度是12km/h,公共汽车的速度是1km/h【解析】设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:,解分式方程即可.【详解】解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:,解得:x=12,经检验,x=12是原分式方程的解,3x=1答:自行车的速度是12km/h,公共汽车的速度是1km/h【点睛】本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.18、(1)(m,2m2);(2)SABC =;(3)m的值为或10+2【解析】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由ABx轴且AB1,可得出点B的坐标为(m2,1a2m2),设BDt,则点C的坐标为(m2t,1a2m2t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出SABC的值;(3)由(2)的结论结合SABC2可求出a值,分三种情况考虑:当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;当2m2m2m2,即2m2时,xm时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值综上即可得出结论详解:(1)y=ax22amx+am2+2m2=a(xm)2+2m2,抛物线的顶点坐标为(m,2m2),故答案为(m,2m2);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,ABx轴,且AB=1,点B的坐标为(m+2,1a+2m2),ABC=132°,设BD=t,则CD=t,点C的坐标为(m+2+t,1a+2m2t),点C在抛物线y=a(xm)2+2m2上,1a+2m2t=a(2+t)2+2m2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=,SABC=ABCD=;(3)ABC的面积为2,=2,解得:a=,抛物线的解析式为y=(xm)2+2m2分三种情况考虑:当m2m2,即m2时,有(2m2m)2+2m2=2,整理,得:m211m+39=0,解得:m1=7(舍去),m2=7+(舍去);当2m2m2m2,即2m2时,有2m2=2,解得:m=;当m2m2,即m2时,有(2m2m)2+2m2=2,整理,得:m220m+60=0,解得:m3=102(舍去),m1=10+2综上所述:m的值为或10+2点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m2、2m2及m2三种情况考虑19、(1)证明见解析;(2).【解析】(1)连接AF、AC,易证EAC=DAF,再证明EACDAF,根据全等三角形的性质即可得CE=DF;(2)由旋转的性质可得DAG、BAE都是旋转角,在四边形AEMB中,BAE+EMB=180°,FMC+EMB=180°,可得FMC=BAE,同理可得DAG=CNF,由此即可解答.【详解】(1)证明:连接,正方形旋转至正方形,在和中, ,(2).DAG、BAE、FMC、CNF;由旋转的性质可得DAG、BAE都是旋转角,在四边形AEMB中,BAE+EMB=180°,FMC+EMB=180°,可得FMC=BAE,同理可得DAG=CNF,【点睛】本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明EACDAF是解决问题的关键.20、(1)CF=;(2)y=(0x2);(3)AB=2.5.【解析】试题分析:(1)根据等腰直角三角形的性质,求得DAC=ACD=45°,进而根据两角对应相等的两三角形相似,可得CEFCAE,然后根据相似三角形的性质和勾股定理可求解;(2)根据相似三角形的判定与性质,由三角形的周长比可求解;(3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由ABE的正切值求解.试题解析:(1)AD=CDDAC=ACD=45°,CEB=45°,DAC=CEB,ECA=ECA,CEFCAE,在RtCDE中,根据勾股定理得,CE= ,CA=,CF=;(2)CFE=BFA,CEB=CAB,ECA=180°CEBCFE=180°CABBFA,ABF=180°CABAFB,ECA=ABF,CAE=ABF=45°,CEABFA,(0x2),(3)由(2)知,CEABFA,AB=x+2,ABE的正切值是,tanABE=,x=,AB=x+2=21、(1);(2);(3)t的值为或1或【解析】(1)先根据t的值计算CQ和CP的长,由图形可知PCQ是直角三角形,根据三角形面积公式可得结论;(2)分两种情况:当Q在边AC上运动时,当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;(3)分别当O与BC相切时、当O与AB相切时,当O与AC相切时三种情况分类讨论即可确定答案【详解】(1)当t=时,CQ=4t=4×=2,即此时Q与A重合,CP=t=,ACB=90°,SPCQ=CQPC=×2×=;(2)分两种情况:当Q在边AC上运动时,0t2,如图1,由题意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,S=;当Q在边AB上运动时,2t4如图2,设O与AB的另一个交点为D,连接PD,CP=t,AC+AQ=4t,PB=BCPC=2t,BQ=2+44t=64t,PQ为O的直径,PDQ=90°,RtACB中,AC=2cm,AB=4cm,B=30°,RtPDB中,PD=PB=,BD=,QD=BQBD=64t=3,PQ=,S=;(3)分三种情况:当O与AC相切时,如图3,设切点为E,连接OE,过Q作QFAC于F,OEAC,AQ=4t2,RtAFQ中,AQF=30°,AF=2t1,FQ=(2t1),FQOEPC,OQ=OP,EF=CE,FQ+PC=2OE=PQ,(2t1)+t=,解得:t=或(舍);当O与BC相切时,如图4,此时PQBC,BQ=64t,PB=2t,cos30°=,t=1;当O与BA相切时,如图5,此时PQBA,BQ=64t,PB=2t,cos30°=,t=,综上所述,t的值为或1或【点睛】本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想22、 (1)相等,理由见解析;(2)2;(3).【解析】(1)先判断出AB=AD,再利用同角的余角相等,判断出ABF=DAE,进而得出ABFDAE,即可得出结论;(2)构造出正方形,同(1)的方法得出ABDCBG,进而得出CG=AB,再判断出AFBCFG,即可得出结论;(3)先构造出矩形,同(1)的方法得,BAD=CBP,进而判断出ABDBCP,即可求出CP,再同(2)的方法判断出CFPAFB,建立方程即可得出结论【详解】解:(1)BF=AE,理由:四边形ABCD是正方形,AB=AD,BAD=D=90°,BAE+DAE=90°,AEBF,BAE+ABF=90°,ABF=DAE,在ABF和DAE中, ABFDAE,BF=AE, (2) 如图2, 过点A作AMBC,过点C作CMAB,两线相交于M,延长BF交CM于G,四边形ABCM是平行四边形,ABC=90°,ABCM是矩形,AB=BC,矩形ABCM是正方形,AB=BC=CM,同(1)的方法得,ABDBCG,CG=BD,点D是BC中点,BD=BC=CM,CG=CM=AB,ABCM,AFBCFG, (3) 如图3,在RtABC中,AB=3,BC=4,AC=5,点D是BC中点,BD=BC=2,过点A作ANBC,过点C作CNAB,两线相交于N,延长BF交CN于P,四边形ABCN是平行四边形,ABC=90°,ABCN是矩形,同(1)的方法得,BAD=CBP,ABD=BCP=90°,ABDBCP,CP= 同(2)的方法,CFPAFB,CF=.【点睛】本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键23、(1)点P在直线上,说明见解析;(2)【解析】解:(1) 求:(1)直线可变为,说明点P在直线上;(2)在直线上取一点(0,1),直线可变为则,这两条平行线的距离为24、x【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:,由得,x2;由得,x,故此不等式组的解集为:x在数轴上表示为:点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键