广东韶关曲江2022-2023学年中考数学对点突破模拟试卷含解析.doc
-
资源ID:87993307
资源大小:818KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东韶关曲江2022-2023学年中考数学对点突破模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,已知ABC中,A=75°,则1+2=( )A335°°B255°C155°D150°2如图,AD为ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()ADC=DEBAB=2DECSCDE=SABCDDEAB3在1、1、3、2这四个数中,最大的数是()A1B1C3D24如图,为的直径,为上两点,若,则的大小为()A60°B50°C40°D20°5下列计算正确的是()A(a+2)(a2)a22B(a+1)(a2)a2+a2C(a+b)2a2+b2D(ab)2a22ab+b26宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房如果有游客居住,宾馆需对居住的每间房每天支出20元的费用当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有()A(x20)(50)10890Bx(50)50×2010890C(180+x20)(50)10890D(x+180)(50)50×20108907|的倒数是( )A2BCD28一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A和B谐C凉D山9下列方程中,是一元二次方程的是()A2xy=3Bx2+=2Cx2+1=x21Dx(x1)=010下列各式属于最简二次根式的有( )ABCD11小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A平均数B加权平均数C众数D中位数122017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为()A3382×108元 B3.382×108元 C338.2×109元 D3.382×1011元二、填空题:(本大题共6个小题,每小题4分,共24分)13因式分解:a32a2b+ab2=_14中,高,则的周长为_。15在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_16若3,a,4,5的众数是4,则这组数据的平均数是_17如图,将AOB绕点O按逆时针方向旋转45°后得到COD,若AOB=15°,则AOD=_度18如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元求每件A种商品和每件B种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?20(6分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是 ,在乙超市摇奖的顾客获得奖金金额的众数是 ;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?21(6分)如图,AB、AD是O的弦,ABC是等腰直角三角形,ADCAEB,请仅用无刻度直尺作图:在图1中作出圆心O;在图2中过点B作BFAC22(8分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0)(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PCPD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由23(8分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0K150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案24(10分)如图,在ABC中,ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF(1)判断直线EF与O的位置关系,并说明理由;(2)若A=30°,求证:DG=DA;(3)若A=30°,且图中阴影部分的面积等于2,求O的半径的长25(10分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x0)元,让利后的购物金额为y元(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由26(12分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(3,0),点C的坐标为(0,3),对称轴为直线x1(1)求抛物线的解析式;(2)若点P在抛物线上,且SPOC4SBOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值27(12分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.(1)求与之间的函数关系式,并注明的取值范围;(2)为何值时,取最大值?最大值是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】A+B+C=180°,A=75°,B+C=180°A=105°1+2+B+C=360°,1+2=360°105°=255°故选B点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n2)×180°(n3且n为整数)是解题的关键2、A【解析】根据三角形中位线定理判断即可【详解】AD为ABC的中线,点E为AC边的中点,DC=BC,DE=AB,BC不一定等于AB,DC不一定等于DE,A不一定成立;AB=2DE,B一定成立;SCDE=SABC,C一定成立;DEAB,D一定成立;故选A【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键3、C【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:根据有理数比较大小的方法,可得-2-111,在1、-1、1、-2这四个数中,最大的数是1故选C【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小4、B【解析】根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,为的直径,故选:B【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.5、D【解析】A、原式=a24,不符合题意;B、原式=a2a2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a22ab+b2,符合题意,故选D6、C【解析】设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x元,根据题意,得(180+x20)(50)1故选:C【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.7、D【解析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案【详解】|=,的倒数是2;|的倒数是2,故选D【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键8、D【解析】分析:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答详解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”故选:D点睛:注意正方体的空间图形,从相对面入手,分析及解答问题9、D【解析】试题解析:含有两个未知数,不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.10、B【解析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可【详解】A选项:,故不是最简二次根式,故A选项错误;B选项:是最简二次根式,故B选项正确;C选项:,故不是最简二次根式,故本选项错误;D选项:,故不是最简二次根式,故D选项错误;故选:B【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键11、C【解析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数故选:C【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用12、D【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】3382亿=338200000000=3.382×1故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题:(本大题共6个小题,每小题4分,共24分)13、a(ab)1【解析】【分析】先提公因式a,然后再利用完全平方公式进行分解即可【详解】原式=a(a11ab+b1)=a(ab)1,故答案为a(ab)1【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键14、32或42【解析】根据题意,分两种情况讨论:若ACB是锐角,若ACB是钝角,分别画出图形,利用勾股定理,即可求解.【详解】分两种情况讨论:若ACB是锐角,如图1,高, 在RtABD中,即:,同理:,的周长=9+5+15+13=42,若ACB是钝角,如图2,高, 在RtABD中,即:,同理:,的周长=9-5+15+13=32,故答案是:32或42. 【点睛】本题主要考查勾股定理,根据题意,画出图形,分类进行计算,是解题的关键.15、(3,2)【解析】作出图形,然后写出点A的坐标即可【详解】解答:如图,点A的坐标为(-3,2)故答案为(-3,2)【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解16、4【解析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可试题解析:3,a,4,5的众数是4,a=4,这组数据的平均数是(3+4+4+5)÷4=4.考点:1.算术平均数;2.众数17、30°【解析】根据旋转的性质得到BOD=45°,再用BOD减去AOB即可.【详解】将AOB绕点O按逆时针方向旋转45°后,得到COD,BOD=45°,又AOB=15°,AOD=BODAOB=45°15°=30°.故答案为30°.18、1【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等连接AB,OD,根据两半圆的直径相等可知AOD=BOD=45°,故可得出绿色部分的面积=SAOD,利用阴影部分Q的面积为:S扇形AOBS半圆S绿色,故可得出结论解:扇形OAB的圆心角为90°,扇形半径为2,扇形面积为:=(cm2),半圆面积为:××12=(cm2),SQ+SM =SM+SP=(cm2),SQ=SP,连接AB,OD,两半圆的直径相等,AOD=BOD=45°,S绿色=SAOD=×2×1=1(cm2),阴影部分Q的面积为:S扇形AOBS半圆S绿色=1=1(cm2)故答案为1考点:扇形面积的计算三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)200元和100元(2)至少6件【解析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34a)件根据获得的利润不低于4000元,建立不等式求出其解即可【详解】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元由题意,得,解得:,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元(2)设购进A种商品a件,则购进B种商品(34a)件由题意,得200a+100(34a)4000,解得:a6答:威丽商场至少需购进6件A种商品20、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4).【解析】(1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.【详解】(1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为=10(元),在乙超市平均获奖为=8.2(元);(4)获得奖金10元的概率是=【点睛】本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.21、见解析.【解析】(1)画出O的两条直径,交点即为圆心O(2)作直线AO交O于F,直线BF即为所求【详解】解:作图如下:(1);(2).【点睛】本题考查作图复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型22、 (1) y=(x1)2+9 ,D(1,9); (2)p=1;(3)存在点Q(2,1)使QBC的面积最大【解析】分析:(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;(2)由题意可知点P在直线CD上时,|PCPD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,m2+2m+1)(0m4),然后用含m的代数式表达出BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.详解:(1)抛物线y=ax2+2x+1经过点B(4,0),16a+1+1=0,a=1,抛物线的解析式为y=x2+2x+1=(x1)2+9,D(1,9);(2)当x=0时,y=1,C(0,1)设直线CD的解析式为y=kx+b将点C、D的坐标代入得:,解得:k=1,b=1,直线CD的解析式为y=x+1当y=0时,x+1=0,解得:x=1,直线CD与x轴的交点坐标为(1,0)当P在直线CD上时,|PCPD|取得最大值,p=1;(3)存在,理由:如图,由(2)知,C(0,1),B(4,0),直线BC的解析式为y=2x+1,过点Q作QEy轴交BC于E,设Q(m,m2+2m+1)(0m4),则点E的坐标为:(m,2m+1),EQ=m2+2m+1(2m+1)=m2+4m,SQBC=(m2+4m)×4=2(m2)2+1,m=2时,SQBC最大,此时点Q的坐标为:(2,1)点睛:(1)解第2小题时,知道当点P在直线CD上时,|PCPD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q的坐标(m,m2+2m+1)(0m4),并结合点B、C的坐标把BCQ的面积用含m的代数式表达出来.23、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100k150时,购进电冰箱38台,空调62台,总利润最大;当0k100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【解析】(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k100)x+20000,分三种情况讨论即可【详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得, m=1200,经检验,m=1200是原分式方程的解,也符合题意,m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(16001500)x+(14001200)(100x)=100x+20000,33x38,x为正整数,x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0k150)元后,这100台家电的销售总利润为y1元,y1=(16001500+k)x+(14001200)(100x)=(k100)x+20000,当100k150时,y1随x的最大而增大,x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0k100时,y1随x的最大而减小,x=34时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【点睛】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键24、(1)EF是O的切线,理由详见解析;(1)详见解析;(3)O的半径的长为1【解析】(1)连接OE,根据等腰三角形的性质得到A=AEO,B=BEF,于是得到OEG=90°,即可得到结论;(1)根据含30°的直角三角形的性质证明即可;(3)由AD是O的直径,得到AED=90°,根据三角形的内角和得到EOD=60°,求得EGO=30°,根据三角形和扇形的面积公式即可得到结论【详解】解:(1)连接OE,OA=OE,A=AEO,BF=EF,B=BEF,ACB=90°,A+B=90°,AEO+BEF=90°,OEG=90°,EF是O的切线;(1)AED=90°,A=30°,ED=AD,A+B=90°,B=BEF=60°,BEF+DEG=90°,DEG=30°,ADE+A=90°,ADE=60°,ADE=EGD+DEG,DGE=30°,DEG=DGE,DG=DE,DG=DA;(3)AD是O的直径,AED=90°,A=30°,EOD=60°,EGO=30°,阴影部分的面积 解得:r1=4,即r=1,即O的半径的长为1【点睛】本题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键25、(1)y1=0.85x,y2=0.75x+50 (x200),y2=x (0x200);(2)x500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x500时,到甲商场购物会更省钱【解析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案【详解】(1)甲商场写出y关于x的函数解析式y1=0.85x, 乙商场写出y关于x的函数解析式y2=200+(x200)×0.75=0.75x+50(x200),即y2=x(0x200);(2)由y1y2,得0.85x0.75x+50,解得x500,即当x500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,即x=500时,到两家商场去购物花费一样;由y1y2,得0.85x0.75x+500,解得x500,即当x500时,到甲商场购物会更省钱;综上所述:x500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x500时,到甲商场购物会更省钱【点睛】本题考查了一次函数的应用,分类讨论是解题关键26、(1)yx2+2x3;(2)点P的坐标为(2,21)或(2,5);(3)【解析】(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|然后依据SPOC2SBOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可【详解】解:(1)抛物线与x轴的交点A(3,0),对称轴为直线x1,抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为ya(x+3)(x1),将点C(0,3)代入,得:3a3,解得a1,则抛物线解析式为y(x+3)(x1)x2+2x3;(2)设点P的坐标为(a,a2+2a3),则点P到OC的距离为|a|SPOC2SBOC,OC|a|2×OCOB,即×3×|a|2××3×1,解得a±2当a2时,点P的坐标为(2,21);当a2时,点P的坐标为(2,5)点P的坐标为(2,21)或(2,5)(3)如图所示:设AC的解析式为ykx3,将点A的坐标代入得:3k30,解得k1,直线AC的解析式为yx3设点D的坐标为(x,x2+2x3),则点Q的坐标为(x,x3)QDx3( x2+2x3)x3x22x+3x23x(x2+3x+)(x+)2+, 当x时,QD有最大值,QD的最大值为【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用27、(1);(1)时,取最大值,为.【解析】(1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即 可得z=,利用矩形的面积公式即可得出解析式;(1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得【详解】解:(1)分别延长DE,FP,与BC的延长线相交于G,H,AF=x,CH=x-4,设AQ=z,PH=BQ=6-z,PHEG,即,化简得z=,y=x=-x1+x (4x10);(1)y=-x1+x=-(x-)1+,当x=dm时,y取最大值,最大值是dm1【点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质