广西南宁市良庆区重点达标名校2022-2023学年中考数学考试模拟冲刺卷含解析.doc
-
资源ID:87993625
资源大小:1.80MB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广西南宁市良庆区重点达标名校2022-2023学年中考数学考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30°B60°C30°或150°D60°或120°2如图,ABC中,AB=4,BC=6,B=60°,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,则平移的距离和旋转角的度数分别为( )A4,30°B2,60°C1,30°D3,60°3如图所示,若将ABO绕点O顺时针旋转180°后得到A1B1O,则A点的对应点A1点的坐标是()A(3,2)B(3,2)C(2,3)D(2,3)42017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )A1.35×106B1.35×105C13.5×104D135×1035将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A10cmB30cmC45cmD300cm6如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )Ax-2或x2Bx-2或0x2C-2x0或0x2D-2x0或x27计算3(9)的结果是( )A12B12C6D68如图,已知ABC,ABAC,将ABC沿边BC翻转,得到的DBC与原ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )A四条边相等的四边形是菱形B一组邻边相等的平行四边形是菱形C对角线互相垂直的平行四边形是菱形D对角线互相垂直平分的四边形是菱形9在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()ABCD10矩形具有而平行四边形不具有的性质是()A对角相等B对角线互相平分C对角线相等D对边相等二、填空题(共7小题,每小题3分,满分21分)11我国古代易经一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_个12如图,在中,于点,于点,为边的中点,连接,则下列结论:,为等边三角形,当时,.请将正确结论的序号填在横线上_. 13如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米14中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数如图,根据刘徽的这种表示法,观察图,可推算图中所得的数值为_15用配方法解方程3x26x+1=0,则方程可变形为(x_)2=_16化简:=_17观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是_m.三、解答题(共7小题,满分69分)18(10分)先化简,再求值:(1)÷,其中x119(5分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°0.9,tan64°2)20(8分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字请你用画树状图的方法,求下列事件的概率:两次取出小球上的数字相同;两次取出小球上的数字之和大于121(10分)如图,点A,C,B,D在同一条直线上,BEDF,A=F,AB=FD,求证:AE=FC22(10分)如图,在中,,点是上一点尺规作图:作,使与、都相切(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:23(12分) (1)如图,四边形为正方形,那么与相等吗?为什么?(2)如图,在中,为边的中点,于点,交于,求的值(3)如图,中,为边的中点,于点,交于,若,求.24(14分)如图,在矩形ABCD中,AB3,AD4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ(1)当点Q落到AD上时,PAB_°,PA_,长为_;(2)当APBD时,记此时点P为P0,点Q为Q0,移动点P的位置,求QQ0D的大小;(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】【分析】由图可知,OA=10,OD=1根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】由图可知,OA=10,OD=1,在RtOAD中,OA=10,OD=1,AD=,tan1=,1=60°,同理可得2=60°,AOB=1+2=60°+60°=120°,C=60°,E=180°-60°=120°,即弦AB所对的圆周角的度数是60°或120°,故选D【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.2、B【解析】试题分析:B=60°,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,ABC=60°,AB=AB=AC=4,ABC是等边三角形,BC=4,BAC=60°,BB=64=2,平移的距离和旋转角的度数分别为:2,60°故选B考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定3、A【解析】由题意可知, 点A与点A1关于原点成中心对称,根据图象确定点A的坐标,即可求得点A1的坐标.【详解】由题意可知, 点A与点A1关于原点成中心对称,点A的坐标是(3,2),点A关于点O的对称点A'点的坐标是(3,2)故选A【点睛】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.4、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:135000=1.35×105故选B【点睛】此题考查科学记数法表示较大的数科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、A【解析】根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。【详解】直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形假设每个圆锥容器的地面半径为解得故答案选A.【点睛】本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。6、D【解析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论【详解】解:反比例函数与正比例函数的图象均关于原点对称,A、B两点关于原点对称,点A的横坐标为1,点B的横坐标为-1,由函数图象可知,当-1x0或x1时函数y1=k1x的图象在的上方,当y1y1时,x的取值范围是-1x0或x1故选:D【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1y1时x的取值范围是解答此题的关键7、A【解析】根据有理数的减法,即可解答【详解】 故选A【点睛】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相反数8、A【解析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可【详解】 将 ABC 延底边 BC 翻折得到 DBC ,AB=BD , AC=CD ,AB=AC ,AB=BD=CD=AC , 四边形 ABDC 是菱形;故选A.【点睛】本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.9、D【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D【详解】解:观察图形可知图案D通过平移后可以得到故选D【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转10、C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可解:矩形的性质有:矩形的对边相等且平行,矩形的对角相等,且都是直角,矩形的对角线互相平分、相等;平行四边形的性质有:平行四边形的对边分别相等且平行,平行四边形的对角分别相等,平行四边形的对角线互相平分;矩形具有而平行四边形不一定具有的性质是对角线相等,故选C二、填空题(共7小题,每小题3分,满分21分)11、1【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案为:1点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力12、【解析】根据直角三角形斜边上的中线等于斜边的一半可判断;先证明ABMACN,再根据相似三角形的对应边成比例可判断;先根据直角三角形两锐角互余的性质求出ABM=ACN=30°,再根据三角形的内角和定理求出BCN+CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出BPN+CPM=120°,从而得到MPN=60°,又由得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断;当ABC=45°时,BCN=45°,进而判断【详解】BMAC于点M,CNAB于点N,P为BC边的中点,PM=BC,PN=BC,PM=PN,正确;在ABM与ACN中,A=A,AMB=ANC=90°,ABMACN,错误;A=60°,BMAC于点M,CNAB于点N,ABM=ACN=30°,在ABC中,BCN+CBM=180°-60°-30°×2=60°,点P是BC的中点,BMAC,CNAB,PM=PN=PB=PC,BPN=2BCN,CPM=2CBM,BPN+CPM=2(BCN+CBM)=2×60°=120°,MPN=60°,PMN是等边三角形,正确;当ABC=45°时,CNAB于点N,BNC=90°,BCN=45°,P为BC中点,可得BC=PB=PC,故正确所以正确的选项有:故答案为【点睛】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键13、【解析】先利用ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2r=,然后解方程即可【详解】O的直径BC=,AB=BC=1,设圆锥的底面圆的半径为r,则2r=,解得r=,即圆锥的底面圆的半径为米故答案为14、【解析】试题分析:根据有理数的加法,可得图中表示(+2)+(5)=1,故答案为1考点:正数和负数15、1 【解析】原方程为3x26x+1=0,二次项系数化为1,得x22x=,即x22x+1=+1,所以(x1)2= .故答案为:1,.16、6【解析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:【详解】,故答案为-617、135【解析】试题分析:根据题意可得:BDA=30°,DAC =60°,在RtABD中,因为AB=45m,所以AD=m,所以在RtACD中,CD=AD=×=135m考点:解直角三角形的应用三、解答题(共7小题,满分69分)18、.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值【详解】原式=当x=1时,原式=【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键19、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度试题解析:(1)在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,设DE=5x米,则EC=12x米,(5x)2+(12x)2=132,解得:x=1,5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知BDH=45°,BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,tan64°=,2=,解得,x=29,AB=x+5=34,即大楼AB的高度是34米20、(1);(2)【解析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率【详解】第二次第一次6276(6,6)(6,2)(6,7)2(2,6)(2,2)(2,7)7(7,6)(7,2)(7,7)(1)P(两数相同)=(2)P(两数和大于1)=【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率21、证明见解析.【解析】由已知条件BEDF,可得出ABE=D,再利用ASA证明ABEFDC即可证明:BEDF,ABE=D,在ABE和FDC中,ABE=D,AB=FD,A=FABEFDC(ASA),AE=FC“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证ABC和FDC全等22、(1)详见解析;(2)详见解析.【解析】(1)利用角平分线的性质作出BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案(2)根据切线的性质,圆周角的性质,由相似判定可证CDBDEB,再根据相似三角形的性质即可求解【详解】解:(1)如图,及为所求(2)连接是的切线,即,是直径,又【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键23、 (1)相等,理由见解析;(2)2;(3).【解析】(1)先判断出AB=AD,再利用同角的余角相等,判断出ABF=DAE,进而得出ABFDAE,即可得出结论;(2)构造出正方形,同(1)的方法得出ABDCBG,进而得出CG=AB,再判断出AFBCFG,即可得出结论;(3)先构造出矩形,同(1)的方法得,BAD=CBP,进而判断出ABDBCP,即可求出CP,再同(2)的方法判断出CFPAFB,建立方程即可得出结论【详解】解:(1)BF=AE,理由:四边形ABCD是正方形,AB=AD,BAD=D=90°,BAE+DAE=90°,AEBF,BAE+ABF=90°,ABF=DAE,在ABF和DAE中, ABFDAE,BF=AE, (2) 如图2, 过点A作AMBC,过点C作CMAB,两线相交于M,延长BF交CM于G,四边形ABCM是平行四边形,ABC=90°,ABCM是矩形,AB=BC,矩形ABCM是正方形,AB=BC=CM,同(1)的方法得,ABDBCG,CG=BD,点D是BC中点,BD=BC=CM,CG=CM=AB,ABCM,AFBCFG, (3) 如图3,在RtABC中,AB=3,BC=4,AC=5,点D是BC中点,BD=BC=2,过点A作ANBC,过点C作CNAB,两线相交于N,延长BF交CN于P,四边形ABCN是平行四边形,ABC=90°,ABCN是矩形,同(1)的方法得,BAD=CBP,ABD=BCP=90°,ABDBCP,CP= 同(2)的方法,CFPAFB,CF=.【点睛】本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键24、 (1)45,;(2)满足条件的QQ0D为45°或135°;(3)BP的长为或;(4)CQ7.【解析】(1)由已知,可知APQ为等腰直角三角形,可得PAB,再利用三角形相似可得PA,及弧AQ的长度;(2)分点Q在BD上方和下方的情况讨论求解即可(3)分别讨论点Q在BD上方和下方的情况,利用切线性质,在由(2)用BP0表示BP,由射影定理计算即可;(4)由(2)可知,点Q在过点Qo,且与BD夹角为45°的线段EF上运动,有图形可知,当点Q运动到点E时,CQ最长为7,再由垂线段最短,应用面积法求CQ最小值【详解】解:(1)如图,过点P做PEAD于点E由已知,APPQ,APQ90°APQ为等腰直角三角形PAQPAB45°设PEx,则AEx,DE4xPEABDEPDAB=解得xPAPE弧AQ的长为2故答案为45,(2)如图,过点Q做QFBD于点F由APQ90°,APP0+QPD90°P0AP+APP090°QPDP0APAPPQAPP0PQFAP0PF,P0PQFAP0P0Q0Q0DP0PQFFQ0QQ0D45°当点Q在BD的右下方时,同理可得PQ0Q45°,此时QQ0D135°,综上所述,满足条件的QQ0D为45°或135°(3)如图当点Q直线BD上方,当以点Q为圆心,BP为半径的圆与直线BD相切时过点Q做QFBD于点F,则QFBP由(2)可知,PP0BPBP0BPAB3,AD4BD5ABP0DBAAB2BP0BD9BP×5BP同理,当点Q位于BD下方时,可求得BP故BP的长为或(4)由(2)可知QQ0D45°则如图,点Q在过点Q0,且与BD夹角为45°的线段EF上运动,当点P与点B重合时,点Q与点F重合,此时,CF431当点P与点D重合时,点Q与点E重合,此时,CE4+37EF=5过点C做CHEF于点H由面积法可知CH=CQ的取值范围为:CQ7【点睛】本题是几何综合题,考查了三角形全等、勾股定理、切线性质以及三角形相似的相关知识,应用了分类讨论和数形结合的数学思想