昆明市第一中学2023届高考数学五模试卷含解析.doc
-
资源ID:87993654
资源大小:1.91MB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
昆明市第一中学2023届高考数学五模试卷含解析.doc
2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知水平放置的ABC是按“斜二测画法”得到如图所示的直观图,其中BOCO1,AO,那么原ABC的面积是()AB2CD2若复数满足,则的虚部为( )A5BCD-53如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是( )ABCD4直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是()ABCD5过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( )ABCD6在三棱锥中,且分别是棱,的中点,下面四个结论:;平面;三棱锥的体积的最大值为;与一定不垂直.其中所有正确命题的序号是( )ABCD7设全集,集合,则集合( )ABCD8如图,在三棱锥中,平面,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为( )ABCD9已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D109510已知双曲线的一条渐近线倾斜角为,则( )A3BCD11设函数,则函数的图像可能为( )ABCD12为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A12种B24种C36种D48种二、填空题:本题共4小题,每小题5分,共20分。13已知F为抛物线C:x28y的焦点,P为C上一点,M(4,3),则PMF周长的最小值是_.14甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是_15的展开式中所有项的系数和为_,常数项为_.16已知为等比数列,是它的前项和.若,且与的等差中项为,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.18(12分)某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列定义随机变量X(xAyA)2+(xByB)2+(xCyC)2+(xDyD)2,用X来衡量家长对小孩饮食习惯的了解程度(1)若参与游戏的家长对小孩的饮食习惯完全不了解()求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;()求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X4,请判断这位家长对小孩饮食习惯是否了解,说明理由19(12分)已知椭圆C:()的左、右焦点分别为,离心率为,且过点.(1)求椭圆C的方程;(2)过左焦点的直线l与椭圆C交于不同的A,B两点,若,求直线l的斜率k.20(12分)在直角坐标系中,直线的参数方程为.(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.21(12分)如图,是矩形,的顶点在边上,点,分别是,上的动点(的长度满足需求).设,且满足.(1)求;(2)若,求的最大值.22(10分)已知.(1)当时,求不等式的解集;(2)若,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先根据已知求出原ABC的高为AO,再求原ABC的面积.【详解】由题图可知原ABC的高为AO,SABC×BC×OA×2×,故答案为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.2、C【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】由(1+i)z|3+4i|,得z,z的虚部为故选C【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题3、C【解析】根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.4、A【解析】由直线过椭圆的左焦点,得到左焦点为,且,再由,求得,代入椭圆的方程,求得,进而利用椭圆的离心率的计算公式,即可求解.【详解】由题意,直线经过椭圆的左焦点,令,解得,所以,即椭圆的左焦点为,且 直线交轴于,所以,因为,所以,所以,又由点在椭圆上,得 由,可得,解得,所以,所以椭圆的离心率为.故选A.【点睛】本题考查了椭圆的几何性质离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:求出 ,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围)5、C【解析】作,;,由题意,由二倍角公式即得解.【详解】由题意,准线:,作,;,设,故,.故选:C【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6、D【解析】通过证明平面,证得;通过证明,证得平面;求得三棱锥体积的最大值,由此判断的正确性;利用反证法证得与一定不垂直.【详解】设的中点为,连接,则,又,所以平面,所以,故正确;因为,所以平面,故正确;当平面与平面垂直时,最大,最大值为,故错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故正确.故选:D【点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.7、C【解析】集合, 点睛:本题是道易错题,看清所问问题求并集而不是交集.8、A【解析】根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率【详解】由已知平面,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为故选:A【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数9、D【解析】确定中前35项里两个数列中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【详解】时,所以数列的前35项和中,有三项3,9,27,有32项,所以故选:D【点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的10、D【解析】由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,解得:.故选:.【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.11、B【解析】根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为: ,函数为偶函数,排除 ,排除 故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.12、C【解析】先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.【详解】把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。故选:C.【点睛】本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】PMF的周长最小,即求最小,过做抛物线准线的垂线,垂足为,转化为求最小,数形结合即可求解.【详解】如图,F为抛物线C:x28y的焦点,P为C上一点,M(4,3),抛物线C:x28y的焦点为F(0,2),准线方程为y2.过作准线的垂线,垂足为,则有,当且仅当三点共线时,等号成立,所以PMF的周长最小值为55.故答案为:5.【点睛】本题考查抛物线定义的应用,考查数形结合与数学转化思想方法,属于中档题.14、【解析】乙不输的概率为,填.15、3 -260 【解析】(1)令求得所有项的系数和; (2)先求出展开式中的常数项与含的系数,再求展开式中的常数项.【详解】将代入,得所有项的系数和为3.因为的展开式中含的项为,的展开式中含常数项,所以的展开式中的常数项为.故答案为:3; -260【点睛】本题考查利用二项展开式的通项公式解决二项展开式的特殊项问题,属于基础题.16、【解析】设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【详解】由等比数列的性质可得,由于与的等差中项为,则,则,因此,.故答案为:.【点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)面积的最小值为;四边形的面积为【解析】(1)将曲线消去参数即可得到的普通方程,将,代入曲线的极坐标方程即可;(2)由(1)得曲线的极坐标方程,设,利用方程可得,再利用基本不等式得,即可得,根据题意知,进而可得四边形的面积.【详解】(1)由曲线的参数方程为(为参数)消去参数得曲线的极坐标方程为,即,所以,曲线的直角坐标方程.(2)依题意得的极坐标方程为设,则,故,当且仅当(即)时取“=”,故,即面积的最小值为.此时,故所求四边形的面积为.【点睛】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题18、(1)()()分布表见解析;(2)理由见解析【解析】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,家长的排序有种等可能结果,利用列举法求出其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,由此能求出他们在一轮游戏中,对四种食物排出的序号完全不同的概率(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,由此能求出X的分布列(2)假设家长对小孩的饮食习惯完全不了解,在一轮游戏中,P(X4)=P(X=0)+ P(X=2)=,三轮游戏结果都满足“X4”的概率为,这个结果发生的可能性很小,从而这位家长对小孩饮食习惯比较了解【详解】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为xA,xB,xC,xD为1234的情况,家长的排序有24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2341,2413,3142,3412,3421,4123,4312,4321,家长的排序与对应位置的数字完全不同的概率P基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序xA,xB,xC,xD为1423的情况,四种食物按1234的排列为ACDB,再研究yAyByCyD的情况即可,其实这样处理后与第一种情况的计算结果是一致的,他们在一轮游戏中,对四种食物排出的序号完全不同的概率为(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表: X 02 4 6 8 10 12 14 16 18 20 P (2)这位家长对小孩的饮食习惯比较了解理由如下:假设家长对小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X4)P(X0)+P(X2),三轮游戏结果都满足“X4”的概率为()3,这个结果发生的可能性很小,这位家长对小孩饮食习惯比较了解【点睛】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是中档题19、(1)(2)直线l的斜率为或【解析】(1)根据已知列出方程组即可解得椭圆方程;(2)设直线方程,与椭圆方程联立, 转化为,借助向量的数量积的坐标表示,及韦达定理即可求得结果.【详解】(1)由题意得解得故椭圆C的方程为.(2)直线l的方程为,设,则由方程组消去y得,所以,由,得,所以,又所以,即所以,因此,直线l的斜率为或.【点睛】本题考查椭圆的标准方程,考查直线和椭圆的位置关系,考查学生的计算求解能力,难度一般.20、(1),.(2)【解析】(1)根据直线的参数方程为(为参数),消去参数,即可求得的的普通方程,曲线的极坐标方程为,利用极坐标化直角坐标的公式: ,即可求得答案;(2)的标准方程为,圆心为,半径为,根据点到直线距离公式,即可求得答案.【详解】(1)直线的参数方程为(为参数),消去参数的普通方程为.曲线的极坐标方程为,利用极坐标化直角坐标的公式:的直角坐标方程为.(2)的标准方程为,圆心为,半径为圆心到的距离为,点到的距离的取值范围是.【点睛】本题解题关键是掌握极坐标化直角坐标的公式和点到直线距离公式,考查了分析能力和计算能力,属于中档题.21、(1)(2)【解析】(1)利用正弦定理和余弦定理化简,根据勾股定理逆定理求得.(2)设,由此求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设,由,根据正弦定理和余弦定理得.化简整理得.由勾股定理逆定理得.(2)设,由(1)的结论知.在中,由,所以.在中,由,所以.所以,由,所以当,即时,取得最大值,且最大值为.【点睛】本小题考查正弦定理,余弦定理,勾股定理,解三角形,三角函数性质及其三角恒等变换等基础知识;考查运算求解能力,推理论证能力,化归与转换思想,应用意识.22、 (1) (2)见证明【解析】(1) 利用零点分段法讨论去掉绝对值求解;(2) 利用绝对值不等式的性质进行证明.【详解】(1)解:当时,不等式可化为.当时,所以;当时,.所以不等式的解集是.(2)证明:由,得,又,所以,即.【点睛】本题主要考查含有绝对值不等式问题的求解,含有绝对值不等式的解法一般是使用零点分段讨论法.