广西河池市天峨县2023年中考数学押题卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家妈妈8:30从家出发,乘车沿相同路线去姥姥家在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示根据图象得出下列结论,其中错误的是()A小亮骑自行车的平均速度是12 km/hB妈妈比小亮提前0.5 h到达姥姥家C妈妈在距家12 km处追上小亮D9:30妈妈追上小亮2向某一容器中注水,注满为止,表示注水量与水深的函数关系的图象大致如图所示,则该容器可能是()ABCD3如图,在RtABC中,C=90°,BC=2,B=60°,A的半径为3,那么下列说法正确的是( )A点B、点C都在A内B点C在A内,点B在A外C点B在A内,点C在A外D点B、点C都在A外4将某不等式组的解集表示在数轴上,下列表示正确的是( )ABCD5某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套设安排x名工人生产螺钉,则下面所列方程正确的是( )A2×1000(26x)=800xB1000(13x)=800xC1000(26x)=2×800xD1000(26x)=800x6下列事件中必然发生的事件是()A一个图形平移后所得的图形与原来的图形不全等B不等式的两边同时乘以一个数,结果仍是不等式C200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D随意翻到一本书的某页,这页的页码一定是偶数7如图,在四边形ABCD中,对角线 ACBD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点若AC=10,BD=6,则四边形EFGH的面积为()A20B15C30D6082018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )A42,41B41,42C41,41D42,459对于二次函数,下列说法正确的是( )A当x>0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点10如图,ABC中,ACB=90°,A=30°,AB=1点P是斜边AB上一点过点P作PQAB,垂足为P,交边AC(或边CB)于点Q,设AP=x,APQ的面积为y,则y与x之间的函数图象大致为( )A BC D11若抛物线yx23x+c与y轴的交点为(0,2),则下列说法正确的是()A抛物线开口向下B抛物线与x轴的交点为(1,0),(3,0)C当x1时,y有最大值为0D抛物线的对称轴是直线x12下列方程中,没有实数根的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,AB为O的弦,C为弦AB上一点,设ACm,BCn(mn),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2n2),则_14分式方程的解为_15如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA3,OB4,D为边OB的中点若E为边OA上的一个动点,当CDE的周长最小时,则点E的坐标_ 16如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OEOF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_17国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m2,将62800用科学记数法表示为_18分解因式:x2yxy2=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,O的直径AD长为6,AB是弦,CDAB,A=30°,且CD=(1)求C的度数;(2)求证:BC是O的切线20(6分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.21(6分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间22(8分)如图所示,在梯形ABCD中,ADBC,ABAD,BAD的平分线AE交BC于点E,连接DE(1)求证:四边形ABED是菱形;(2)若ABC60°,CE2BE,试判断CDE的形状,并说明理由23(8分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具不妨设该种品牌玩具的销售单价为x元(x40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?24(10分)如图,已知ABC内接于,AB是直径,ODAC,AD=OC(1)求证:四边形OCAD是平行四边形;(2)填空:当B= 时,四边形OCAD是菱形;当B= 时,AD与相切.25(10分)解方程组 26(12分)如图,在ABC中,ABC=90°,BDAC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F(1)当AE平分BAC时,求证:BEF=BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长27(12分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.求反比例函数和一次函数的表达式;直接写出关于的不等式的解集.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为108=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答【详解】解:A、根据函数图象小亮去姥姥家所用时间为108=2小时,小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,109.5=0.5(小时),妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为98=1小时,小亮走的路程为:1×12=12km,妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.2、D【解析】根据函数的图象和所给出的图形分别对每一项进行判断即可.【详解】由函数图象知: 随高度h的增加, y也增加,但随h变大, 每单位高度的增加, 注水量h的增加量变小, 图象上升趋势变缓, 其原因只能是水瓶平行于底面的截面的半径由底到顶逐渐变小, 故D项正确.故选: D.【点睛】本题主要考查函数模型及其应用.3、D【解析】先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.【详解】由题意可求出A=30°,AB=2BC=4, 由勾股定理得AC=2, AB=4>3, AC=2>3,点B、点C都在A外.故答案选D.【点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.4、B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“”,“”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左点睛:不等式组的解集为1x<3在数轴表示1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,向右画;< ,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、C【解析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.6、C【解析】直接利用随机事件、必然事件、不可能事件分别分析得出答案【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键7、B【解析】有一个角是直角的平行四边形是矩形利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可【详解】点E、F分别为四边形ABCD的边AD、AB的中点,EFBD,且EF=BD=1同理求得EHACGF,且EH=GF=AC=5,又ACBD,EFGH,FGHE且EFFG四边形EFGH是矩形四边形EFGH的面积=EFEH=1×5=2,即四边形EFGH的面积是2故选B【点睛】本题考查的是中点四边形解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(1)对角线互相平分且相等的四边形是矩形8、C【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个【详解】从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数所以本题这组数据的中位数是 1,众数是 1 故选C【点睛】考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数9、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.10、D【解析】解:当点Q在AC上时,A=30°,AP=x,PQ=xtan30°=,y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示:AP=x,AB=1,A=30°,BP=1x,B=60°,PQ=BPtan60°=(1x), =APPQ= = ,该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下故选D点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况11、D【解析】A、由a=10,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确综上即可得出结论【详解】解:A、a=10,抛物线开口向上,A选项错误;B、抛物线y=x1-3x+c与y轴的交点为(0,1),c=1,抛物线的解析式为y=x1-3x+1当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、抛物线开口向上,y无最大值,C选项错误;D、抛物线的解析式为y=x1-3x+1,抛物线的对称轴为直线x=-=-=,D选项正确故选D【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键12、B【解析】分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项【详解】解:A、=(-2)2-4×(-3)=160,方程有两个不相等的两个实数根,所以A选项错误;B、=(-2)2-4×3=-80,方程没有实数根,所以B选项正确;C、=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;D、=(-2)2-4×(-1)=80,方程有两个不相等的两个实数根,所以D选项错误故选:B【点睛】本题考查根的判别式:一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0根时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=OB2-OC2=(m2-n2),则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论【详解】如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=OB2-OC2=(m2-n2),OB2-OC2=m2-n2,AC=m,BC=n(mn),AM=m+n,过O作ODAB于D,BD=AD=AB=,CD=AC-AD=m-=,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,m2-n2=mn,m2-mn-n2=0,m=,m0,n0,m=,故答案为【点睛】此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目14、-1【解析】【分析】先去分母,化为整式方程,然后再进行检验即可得.【详解】两边同乘(x+2)(x-2),得:x-23x=0,解得:x=-1,检验:当x=-1时,(x+2)(x-2)0,所以x=-1是分式方程的解,故答案为:-1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.15、 (1,0) 【解析】分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值为此,作点D关于x轴的对称点D,当点E在线段CD上时的周长最小详解:如图,作点D关于x轴的对称点D,连接CD与x轴交于点E,连接DE.若在边OA上任取点E与点E不重合,连接CE、DE、DE由DE+CE=DE+CE>CD=DE+CE=DE+CE,可知CDE的周长最小,在矩形OACB中,OA=3,OB=4,D为OB的中点,BC=3,DO=DO=2,DB=6,OEBC, RtDOERtDBC,有 OE=1,点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题, 坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.16、 【解析】由BOFAOE,得到BE=FC=2,在直角BEF中,从而求得EF的值【详解】正方形ABCD中,OB=OC,BOC=EOF=90°,EOB=FOC,在BOE和COF中,BOECOF(ASA)BE=FC=2,同理BF=AE=3,在RtBEF中,BF=3,BE=2,EF=故答案为【点睛】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长17、6.28×1【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】62800用科学记数法表示为6.28×1故答案为6.28×1【点睛】此题主要考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值18、xy(xy)【解析】原式=xy(xy)故答案为xy(xy)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)60°;(2)见解析【解析】(1)连接BD,由AD为圆的直径,得到ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出C的度数;(2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出ABC度数,由ABCABO度数确定出OBC度数为90,即可得证;【详解】(1)如图,连接BD,AD为圆O的直径,ABD=90°,BD=AD=3,CDAB,ABD=90°,CDB=ABD=90°,在RtCDB中,tanC=,C=60°;(2)连接OB,A=30°,OA=OB,OBA=A=30°,CDAB,C=60°,ABC=180°C=120°,OBC=ABCABO=120°30°=90°,OBBC,BC为圆O的切线【点睛】此题考查了切线的判定,熟练掌握性质及定理是解本题的关键20、小王在这两年春节收到的年平均增长率是【解析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可【详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量21、骑共享单车从家到单位上班花费的时间是1分钟【解析】试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.试题解析:设骑共享单车从家到单位上班花费x分钟,依题意得: 解得x=1经检验,x=1是原方程的解,且符合题意答:骑共享单车从家到单位上班花费的时间是1分钟22、见解析【解析】试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD, 邻边相等的平行四边形是菱形;(2)四边形ABED是菱形,ABC=60°,所以DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得DEC是直角三角形试题解析:梯形ABCD中,ADBC,四边形ABED是平行四边形,又AB=AD,四边形ABED是菱形;(2)四边形ABED是菱形,ABC=60°,DEC=60°,AB=ED,又EC=2BE,EC=2DE, DEC是直角三角形,考点:1菱形的判定;2直角三角形的性质;3平行四边形的判定23、 (1) 1000x,10x2+1300x1;(2)50元或80元;(3)8640元.【解析】(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600(x40)x=1000x,销售利润w=(1000x)(x30)=10x2+1300x1(2)令10x2+1300x1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=10x2+1300x1转化成y=10(x65)2+12250,结合x的取值范围,求出最大利润【详解】解:(1)销售量y=600(x40)x=1000x,销售利润w=(1000x)(x30)=10x2+1300x1故答案为: 1000x,10x2+1300x1(2)10x2+1300x1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润(3)根据题意得,解得:44x46 w=10x2+1300x1=10(x65)2+12250a=100,对称轴x=65,当44x46时,y随x增大而增大当x=46时,W最大值=8640(元)答:商场销售该品牌玩具获得的最大利润为8640元24、(1)证明见解析;(2) 30°, 45°【解析】试题分析:(1)根据已知条件求得OAC=OCA,AOD=ADO,然后根据三角形内角和定理得出AOC=OAD,从而证得OCAD,即可证得结论;(2)若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出即可求得AD与相切,根据切线的性质得出根据ADOC,内错角相等得出从而求得试题解析:(方法不唯一)(1)OA=OC,AD=OC,OA=AD,OAC=OCA,AOD=ADO,ODAC,OAC=AOD,OAC=OCA=AOD=ADO,AOC=OAD,OCAD,四边形OCAD是平行四边形;(2)四边形OCAD是菱形,OC=AC,又OC=OA,OC=OA=AC, 故答案为 AD与相切, ADOC, 故答案为25、【解析】将×3,再联立消未知数即可计算.【详解】解:得: +得: 把代入得方程组的解为【点睛】本题考查二元一次方程组解法,关键是掌握消元法.26、(1)证明见解析;(1)2【解析】分析:(1)根据角平分线的定义可得1=1,再根据等角的余角相等求出BEF=AFD,然后根据对顶角相等可得BFE=AFD,等量代换即可得解; (1)根据中点定义求出BC,利用勾股定理列式求出AB即可详解:(1)如图,AE平分BAC,1=1 BDAC,ABC=90°,1+BEF=1+AFD=90°,BEF=AFD BFE=AFD(对顶角相等),BEF=BFE; (1)BE=1,BC=4,由勾股定理得:AB=2 点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键27、(1)y=-y=x-1(1)x2【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1), 点A(5,2),点B(2,3), 又点C在y轴负半轴,点D在第二象限,点C的坐标为(2,-1),点D的坐标为(-1,3)点在反比例函数y=的图象上, 反比例函数的表达式为 将A(5,2)、B(2,-1)代入y=kx+b,解得: 一次函数的表达式为(1)将代入,整理得: 一次函数图象与反比例函数图象无交点观察图形,可知:当x2时,反比例函数图象在一次函数图象上方,不等式kx+b的解集为x2点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点