广东省汕头龙湖区七校联考2023届中考五模数学试题含解析.doc
-
资源ID:87993787
资源大小:782KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省汕头龙湖区七校联考2023届中考五模数学试题含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,OAC和BAD都是等腰直角三角形,ACO=ADB=90°,反比例函数y=在第一象限的图象经过点B,则OAC与BAD的面积之差SOACSBAD为()A36B12C6D32一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字16)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()ABCD3关于的分式方程解为,则常数的值为( )ABCD4若二次函数的图象经过点(1,0),则方程的解为( )A,B,C,D,5解分式方程3=时,去分母可得()A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=46过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()ABCD7如图,O 是等边ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )ABC2D38下列调查中,调查方式选择合理的是()A为了解襄阳市初中每天锻炼所用时间,选择全面调查B为了解襄阳市电视台襄阳新闻栏目的收视率,选择全面调查C为了解神舟飞船设备零件的质量情况,选择抽样调查D为了解一批节能灯的使用寿命,选择抽样调查9关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2x1x21,则k的取值范围在数轴上表示为( )ABCD10我国作家莫言获得诺贝尔文学奖之后,他的代表作品蛙的销售量就比获奖之前增长了180倍,达到2100000册把2100000用科学记数法表示为()A0.21×108B21×106C2.1×107D2.1×106二、填空题(共7小题,每小题3分,满分21分)11一艘货轮以18km/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B的距离是_km.12已知关于x的不等式组只有四个整数解,则实数a的取值范是_13如图,在平面直角坐标系中,已知A(2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA,则A的坐标为_14计算的结果等于_15化简:a+1+a(a+1)+a(a+1)2+a(a+1)99=_16如图,ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:E为AB的中点;FC=4DF;SECF=;当CEBD时,DFN是等腰三角形其中一定正确的是_17如图,经过点B(2,0)的直线与直线相交于点A(1,2),则不等式的解集为 三、解答题(共7小题,满分69分)18(10分)新春佳节,电子鞭炮因其安全、无污染开始走俏某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=2x+320(80x160)设这种电子鞭炮每天的销售利润为w元(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快那么销售单价应定为多少元?19(5分)有这样一个问题:探究函数y2x的图象与性质小东根据学习函数的经验,对函数y2x的图象与性质进行了探究下面是小东的探究过程,请补充完整:(1)函数y2x的自变量x的取值范围是_;(2)如表是y与x的几组对应值x43.532101233.54y 0m则m的值为_;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质_20(8分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将ABC绕点D顺时针旋转90°画出旋转后的图形A1B1C1;在网格中将ABC放大2倍得到DEF,使A与D为对应点21(10分)已知AB是O的直径,弦CD与AB相交,BAC40°(1)如图1,若D为弧AB的中点,求ABC和ABD的度数;(2)如图2,过点D作O的切线,与AB的延长线交于点P,若DPAC,求OCD的度数22(10分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,23(12分)如图,直线y=kx+b(k0)与双曲线y=(m0)交于点A(,2),B(n,1)求直线与双曲线的解析式点P在x轴上,如果SABP=3,求点P的坐标24(14分)如图,在ABC中,ABC=90°,以AB为直径的O与AC边交于点D,过点D的直线交BC边于点E,BDE=A判断直线DE与O的位置关系,并说明理由若O的半径R=5,tanA=,求线段CD的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】设OAC和BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论 解:设OAC和BAD的直角边长分别为a、b, 则点B的坐标为(a+b,ab)点B在反比例函数的第一象限图象上, (a+b)×(ab)=a2b2=1 SOACSBAD=a2b2=(a2b2)=×1=2 故选D点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2b2的值解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键2、B【解析】直接得出两位数是3的倍数的个数,再利用概率公式求出答案【详解】一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.得到的两位数是3的倍数的概率为: =.故答案选:B.【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.3、D【解析】根据分式方程的解的定义把x=4代入原分式方程得到关于a的一次方程,解得a的值即可【详解】解:把x=4代入方程,得,解得a=1经检验,a=1是原方程的解故选D点睛:此题考查了分式方程的解,分式方程注意分母不能为24、C【解析】二次函数的图象经过点(1,0),方程一定有一个解为:x=1,抛物线的对称轴为:直线x=1,二次函数的图象与x轴的另一个交点为:(3,0),方程的解为:,故选C考点:抛物线与x轴的交点5、B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断【详解】方程两边同时乘以(x-2),得13(x2)=4,故选B【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.6、B【解析】试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.7、D【解析】根据等边三角形的性质得到A=60°,再利用圆周角定理得到BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可【详解】ABC 为等边三角形,A=60°,BOC=2A=120°,图中阴影部分的面积= =3 故选D【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得BOC=120°是解决问题的关键8、D【解析】A为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B为了解襄阳市电视台襄阳新闻栏目的收视率,选择抽样调查,故B不符合题意;C为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D9、D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集解:关于x的一元二次方程x2+2x+k+1=0有两个实根,0,44(k+1)0,解得k0,x1+x2=2,x1x2=k+1,2(k+1)1,解得k2,不等式组的解集为2k0,在数轴上表示为:,故选D点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键10、D【解析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】作CEAB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出B的度数,根据正弦的定义计算即可【详解】作CEAB于E,1km/h×30分钟=9km,AC=9km,CAB=45°,CE=ACsin45°=9km,灯塔B在它的南偏东15°方向,NCB=75°,CAB=45°,B=30°,BC=1km,故答案为:1【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键12、-3a-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围详解: 由不等式解得: 由不等式移项合并得:2x>4,解得:x<2,原不等式组的解集为 由不等式组只有四个整数解,即为1,0,1,2,可得出实数a的范围为 故答案为点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数的取值范围.13、 (2,3)【解析】作ACx轴于C,作ACx轴,垂足分别为C、C,证明ABCBAC,可得OC=OB+BC=1+1=2,AC=BC=3,可得结果【详解】如图,作ACx轴于C,作ACx轴,垂足分别为C、C,点A、B的坐标分别为(-2,1)、(1,0),AC=2,BC=2+1=3,ABA=90°,ABC+ABC=90°,BAC+ABC=90°,BAC=ABC,BA=BA,ACB=BCA,ABCBAC,OC=OB+BC=1+1=2,AC=BC=3,点A的坐标为(2,3)故答案为(2,3)【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定解决问题的关键是作辅助线构造全等三角形14、【解析】分析:直接利用二次根式的性质进行化简即可详解:= 故答案为点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键15、(a+1)1【解析】原式提取公因式,计算即可得到结果【详解】原式=(a+1)1+a+a(a+1)+a(a+1)2+a(a+1)98,=(a+1)21+a+a(a+1)+a(a+1)2+a(a+1)97,=(a+1)31+a+a(a+1)+a(a+1)2+a(a+1)96,=,=(a+1)1故答案是:(a+1)1【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键16、【解析】由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,ABCD,推出BEMCDM,根据相似三角形的性质得到,于是得到BE=AB,故正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故错误;根据已知条件得到SBEM=SEMN=SCBE,求得=,于是得到SECF=,故正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到ENB=EBN,等量代换得到CDN=DNF,求得DFN是等腰三角形,故正确【详解】解:M、N是BD的三等分点,DN=NM=BM,四边形ABCD是平行四边形,AB=CD,ABCD,BEMCDM,BE=CD,BE=AB,故正确;ABCD,DFNBEN,=,DF=BE,DF=AB=CD,CF=3DF,故错误;BM=MN,CM=2EM,BEM=SEMN=SCBE,BE=CD,CF=CD,=,SEFC=SCBE=SMNE,SECF=,故正确;BM=NM,EMBD,EB=EN,ENB=EBN,CDAB,ABN=CDB,DNF=BNE,CDN=DNF,DFN是等腰三角形,故正确;故答案为【点睛】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质17、【解析】分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围由图象可知,此时三、解答题(共7小题,满分69分)18、(1)w=2x2+480x25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)销售单价应定为100元【解析】(1)用每件的利润乘以销售量即可得到每天的销售利润,即 然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;(3)求所对应的自变量的值,即解方程然后检验即可.【详解】(1) w与x的函数关系式为: (2) 当时,w有最大值w最大值为1答:销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)当时, 解得: 想卖得快,不符合题意,应舍去答:销售单价应定为100元19、(1)任意实数;(2);(3)见解析;(4)当x2时,y随x的增大而增大;当x2时,y随x的增大而增大【解析】(1)没有限定要求,所以x为任意实数,(2)把x3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【详解】解:(1)函数y2x的自变量x的取值范围是任意实数;故答案为任意实数;(2)把x3代入y2x得,y;故答案为;(3)如图所示;(4)根据图象得,当x2时,y随x的增大而增大;当x2时,y随x的增大而增大故答案为当x2时,y随x的增大而增大;当x2时,y随x的增大而增大【点睛】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.20、(1)见解析(2)见解析【解析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得【详解】解:(1)如图所示,A1B1C1即为所求;(2)如图所示,DEF即为所求【点睛】本题主要考查作图位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质21、(1)45°;(2)26°【解析】(1)根据圆周角和圆心角的关系和图形可以求得ABC和ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得OCD的大小【详解】(1)AB是O的直径,BAC=38°, ACB=90°,ABC=ACBBAC=90°38°=52°,D为弧AB的中点,AOB=180°,AOD=90°,ABD=45°;(2)连接OD,DP切O于点D,ODDP,即ODP=90°,DPAC,BAC=38°,P=BAC=38°,AOD是ODP的一个外角,AOD=P+ODP=128°,ACD=64°,OC=OA,BAC=38°,OCA=BAC=38°,OCD=ACDOCA=64°38°=26°【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答22、14.2米;【解析】RtADB中用AB表示出BD、RtACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得【详解】设米C=45°在中,米, 又米,在中TanADB= ,Tan60°=解得答,建筑物的高度为米【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件23、(1)y=2x+1;(2)点P的坐标为(,0)或(,0)【解析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合SABP=3,即可得出,解之即可得出结论【详解】(1)双曲线y=(m0)经过点A(,2),m=1双曲线的表达式为y=点B(n,1)在双曲线y=上,点B的坐标为(1,1)直线y=kx+b经过点A(,2),B(1,1),解得直线的表达式为y=2x+1;(2)当y=2x+1=0时,x=,点C(,0)设点P的坐标为(x,0),SABP=3,A(,2),B(1,1),×3|x|=3,即|x|=2,解得:x1=,x2=点P的坐标为(,0)或(,0)【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及SABP=3,得出24、(1) DE与O相切; 理由见解析;(2)【解析】(1)连接OD,利用圆周角定理以及等腰三角形的性质得出ODDE,进而得出答案;(2)得出BCDACB,进而利用相似三角形的性质得出CD的长【详解】解:(1)直线DE与O相切理由如下:连接ODOA=ODODA=A又BDE=AODA=BDEAB是O直径ADB=90°即ODA+ODB=90°BDE+ODB=90°ODE=90°ODDEDE与O相切;(2)R=5,AB=10,在RtABC中tanA=BC=ABtanA=10×,AC=,BDC=ABC=90°,BCD=ACBBCDACBCD=【点睛】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键