广东省深圳市宝山区2022-2023学年中考数学全真模拟试卷含解析.doc
-
资源ID:87993840
资源大小:537KB
全文页数:12页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省深圳市宝山区2022-2023学年中考数学全真模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在下列四个图案中既是轴对称图形,又是中心对称图形的是( )ABC.D2甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )A甲的速度是70米/分B乙的速度是60米/分C甲距离景点2100米D乙距离景点420米3矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )A(5,5)B(5,4)C(6,4)D(6,5)4有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A平均数B中位数C众数D方差5设x1,x2是一元二次方程x22x3=0的两根,则x12+x22=( )A6 B8 C10 D126如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )A15mB25mC30mD20m7下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A2B1C0D18如图,三角形纸片ABC,AB10cm,BC7cm,AC6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则AED的周长为()A9cmB13cmC16cmD10cm9为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着BED的路线匀速行进,到达点D设运动员P的运动时间为t,到监测点的距离为y现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A监测点AB监测点BC监测点CD监测点D10如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A右转80°B左转80°C右转100°D左转100°二、填空题(共7小题,每小题3分,满分21分)11如图,在O中,直径AB弦CD,A=28°,则D=_12在函数y中,自变量x的取值范围是_13如图1,点P从扇形AOB的O点出发,沿OAB0以1cm/s的速度匀速运动,图2是点P运动时,线段OP的长度y随时间x变化的关系图象,则扇形AOB中弦AB的长度为_cm14等腰ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_秒15方程组的解一定是方程_与_的公共解16关于x的一元二次方程kx22x+1=0有两个不相等的实数根,则k的取值范围是 17一个正多边形的一个外角为30°,则它的内角和为_三、解答题(共7小题,满分69分)18(10分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BGHG,CHAH,求塔杆CH的高(参考数据:tan55°1.4,tan35°0.7,sin55°0.8,sin35°0.6)19(5分)观察下列各个等式的规律:第一个等式:=1,第二个等式: =2,第三个等式:=3请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的20(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60m100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表征文比赛成绩频数分布表分数段频数频率60m70380.3870m80a0.3280m90bc90m100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是 ;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数21(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF(1)求证:四边形ACDF是平行四边形;(2)当CF平分BCD时,写出BC与CD的数量关系,并说明理由22(10分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成这项工程的规定时间是多少天?23(12分) “绿水青山就是金山银山”,北京市民积极参与义务植树活动小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 1 2 3 2 3 2 3 3 4 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:绘制如下的统计图,请补充完整;这30户家庭2018年4月份义务植树数量的平均数是_,众数是_;(2)“互联网全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有_户24(14分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.546.5;B:46.553.5;C:53.560.5;D:60.567.5;E:67.574.5),并依据统计数据绘制了如下两幅尚不完整的统计图补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A、不是轴对称图形,是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意故选B考点:轴对称图形和中心对称图形2、D【解析】根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度=70米/分,故A正确,不符合题意;设乙的速度为x米/分则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题3、B【解析】由矩形的性质可得ABCD,AB=CD,AD=BC,ADBC,即可求点D坐标【详解】解:四边形ABCD是矩形ABCD,AB=CD,AD=BC,ADBC,A(1,4)、B(1,1)、C(5,1),ABCDy轴,ADBCx轴点D坐标为(5,4)故选B【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.4、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数故选B【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用5、C【解析】试题分析:根据根与系数的关系得到x1+x2=2,x1x2=3,再变形x12+x22得到(x1+x2)22x1x2,然后利用代入计算即可解:一元二次方程x22x3=0的两根是x1、x2,x1+x2=2,x1x2=3,x12+x22=(x1+x2)22x1x2=222×(3)=1故选C6、D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半7、A【解析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解【详解】|-1|=1,|-1|=1,|-1|-1|=10,四个数表示在数轴上,它们对应的点中,离原点最远的是-1故选A【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想8、A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE易求AE及AED的周长解:由折叠的性质知,CD=DE,BC=BE=7cmAB=10cm,BC=7cm,AE=ABBE=3cmAED的周长=AD+DE+AE=AC+AE=6+3=9(cm)故选A点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等9、C【解析】试题解析:、由监测点监测时,函数值随的增大先减少再增大故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误故选10、A【解析】60°+20°=80°由北偏西20°转向北偏东60°,需要向右转故选A二、填空题(共7小题,每小题3分,满分21分)11、34°【解析】分析:首先根据垂径定理得出BOD的度数,然后根据三角形内角和定理得出D的度数详解:直径AB弦CD, BOD=2A=56°, D=90°56°=34°点睛:本题主要考查的是圆的垂径定理,属于基础题型求出BOD的度数是解题的关键12、x4【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义由题意得,考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.13、【解析】由图2可以计算出OB的长度,然后利用OBOA可以计算出通过弦AB的长度.【详解】由图2得通过OB所用的时间为s,则OB的长度为1×22cm,则通过弧AB的时间为s,则弧长AB为,利用弧长公式,得出AOB120°,即可以算出AB为.【点睛】本题主要考查了从图中提取信息的能力和弧长公式的运用及转换,熟练运用公式是本题的解题关键.14、7秒或25秒【解析】考点:勾股定理;等腰三角形的性质专题:动点型;分类讨论分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:PAACPAAB,从而可得到运动的时间解答:解:如图,作ADBC,交BC于点D,BC=8cm,BD=CD=BC=4cm,AD=3,分两种情况:当点P运动t秒后有PAAC时,AP2=PD2+AD2=PC2-AC2,PD2+AD2=PC2-AC2,PD2+32=(PD+4)2-52PD=2.25,BP=4-2.25=1.75=0.25t,t=7秒,当点P运动t秒后有PAAB时,同理可证得PD=2.25,BP=4+2.25=6.25=0.25t,t=25秒,点P运动的时间为7秒或25秒点评:本题利用了等腰三角形的性质和勾股定理求解15、5x3y=8 3x+8y=9 【解析】方程组的解一定是方程5x3y=8与3x+8y=9的公共解故答案为5x3y=8;3x+8y=9.16、k1且k1【解析】试题分析:根据一元二次方程的定义和的意义得到k1且1,即(2)24×k×11,然后解不等式即可得到k的取值范围解:关于x的一元二次方程kx22x+1=1有两个不相等的实数根,k1且1,即(2)24×k×11,解得k1且k1k的取值范围为k1且k1故答案为k1且k1考点:根的判别式;一元二次方程的定义17、1800°【解析】试题分析:这个正多边形的边数为=12,所以这个正多边形的内角和为(122)×180°=1800°故答案为1800°考点:多边形内角与外角三、解答题(共7小题,满分69分)18、1米【解析】试题分析:作BEDH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtanCAH=tan55°x知CE=CHEH=tan55°x10,根据BE=DE可得关于x的方程,解之可得试题解析:解:如图,作BEDH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在RtACH中,CH=AHtanCAH=tan55°x,CE=CHEH=tan55°x10,DBE=45°,BE=DE=CE+DC,即43+x=tan55°x10+35,解得:x45,CH=tan55°x=1.4×45=1答:塔杆CH的高为1米点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形19、(1)=4;(2)=n【解析】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;(2)第n个等式是:=n证明如下:= = =n第n个等式是:=n点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子20、(1)0.2;(2)答案见解析;(3)300【解析】第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.【详解】解:(1)10.380.320.1=0.2,故答案为0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇)【点睛】掌握有关频率和频数的相关概念和计算,是解答本题的关键.21、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定FAECDE,即可得到CD=FA,再根据CDAF,即可得出四边形ACDF是平行四边形;(2)先判定CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD详解:(1)四边形ABCD是矩形,ABCD,FAE=CDE,E是AD的中点,AE=DE,又FEA=CED,FAECDE,CD=FA,又CDAF,四边形ACDF是平行四边形;(2)BC=2CD证明:CF平分BCD,DCE=45°,CDE=90°,CDE是等腰直角三角形,CD=DE,E是AD的中点,AD=2CD,AD=BC,BC=2CD点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的22、这项工程的规定时间是83天【解析】依据题意列分式方程即可.【详解】设这项工程的规定时间为x天,根据题意得 .解得x83.检验:当x83时,3x0.所以x83是原分式方程的解答:这项工程的规定时间是83天【点睛】正确理解题意是解题的关键,注意检验.23、 (1) 3.4棵、3棵;(2)1.【解析】(1)由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得【详解】解:(1)由已知数据知3棵的有12人、4棵的有8人,补全图形如下:这30户家庭2018年4月份义务植树数量的平均数是(棵),众数为3棵,故答案为:3.4棵、3棵;(2)估计该小区采用这种形式的家庭有户,故答案为:1【点睛】此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.24、576名【解析】试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名试题解析:本次调查的学生有:32÷16%=200(名),体重在B组的学生有:20016484032=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大约有:1800×=576(名),答:我校初三年级体重介于47kg至53kg的学生大约有576名