崇左市重点中学2023届中考数学模拟试题含解析.doc
-
资源ID:87993853
资源大小:654KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
崇左市重点中学2023届中考数学模拟试题含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列各式:a0=1 a2·a3=a5 22= (35)(2)4÷8×(1)=0x2+x2=2x2,其中正确的是 ( )ABCD2计算 的结果为()A1BxCD3小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且ab.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案32.52.55则最省钱的方案为( )A方案1B方案2C方案3D三个方案费用相同4已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D55如图,ABCD,DEBE,BF、DF分别为ABE、CDE的角平分线,则BFD()A110°B120°C125°D135°6把三角形按如图所示的规律拼图案,其中第个图案中有1个三角形,第个图案中有4个三角形,第个图案中有8个三角形,按此规律排列下去,则第个图案中三角形的个数为()A15B17C19D247如图,DE是线段AB的中垂线,则点A到BC的距离是A4BC5D683的绝对值是()A3B3C-D9为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A140元B150元C160元D200元10如图,右侧立体图形的俯视图是( )A B C D二、填空题(共7小题,每小题3分,满分21分)11已知二次函数y=x2,当x0时,y随x的增大而_(填“增大”或“减小”)12从2,1,1,2四个数中,随机抽取两个数相乘,积为大于4小于2的概率是_13如图,O的直径CD垂直于AB,AOC=48°,则BDC=度14如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100,扇形的圆心角为120°,这个扇形的面积为 15如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知DEEA,斜坡CD的长度为30m,DE的长为15m,则树AB的高度是_m16如图,菱形ABCD的边ADy轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y(k0,x0)的图象经过顶点C、D,若点C的横坐标为5,BE3DE,则k的值为_17如图,点A在双曲线上,点B在双曲线上,且ABx轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 三、解答题(共7小题,满分69分)18(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m求篮板底部支架HE与支架AF所成的角FHE的度数求篮板顶端F到地面的距离(结果精确到0.1 m;参考数据:cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)19(5分)如图,在ABC中,AB=BC,CDAB于点D,CD=BDBE平分ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.(1)求证:ADCFDB;(2)求证:(3)判断ECG的形状,并证明你的结论.20(8分)已知关于x的一元二次方程x2+2(m1)x+m230有两个不相等的实数根(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值21(10分)如图,顶点为C的抛物线y=ax2+bx(a0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,AOB=120°(1)求这条抛物线的表达式;(2)过点C作CEOB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE,旋转角为(0°120°),连接EA、EB,求EA+EB的最小值22(10分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?23(12分)解方程:(1)x27x180(2)3x(x1)22x24(14分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的图象上,过点A的直线y=x+b交x轴于点B求k和b的值;求OAB的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据实数的运算法则即可一一判断求解.【详解】有理数的0次幂,当a=0时,a0=0;为同底数幂相乘,底数不变,指数相加,正确;中22= ,原式错误;为有理数的混合运算,正确;为合并同类项,正确故选D.2、A【解析】根据同分母分式的加减运算法则计算可得【详解】原式=1,故选:A【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则3、A【解析】求出三种方案混合糖果的单价,比较后即可得出结论.【详解】方案1混合糖果的单价为,方案2混合糖果的单价为,方案3混合糖果的单价为.ab,方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.4、B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【详解】关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,-2+m=,解得,m=-1,故选B5、D【解析】如图所示,过E作EGABABCD,EGCD,ABE+BEG=180°,CDE+DEG=180°,ABE+BED+CDE=360°又DEBE,BF,DF分别为ABE,CDE的角平分线,FBE+FDE=(ABE+CDE)=(360°90°)=135°,BFD=360°FBEFDEBED=360°135°90°=135°故选D【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补解决问题的关键是作平行线6、D【解析】由图可知:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第个图案有三角形1+3+4+412,第n个图案有三角形4(n1)个(n1时),由此得出规律解决问题【详解】解:解:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第n个图案有三角形4(n1)个(n1时),则第个图中三角形的个数是4×(71)24个,故选D【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an4(n1)是解题的关键7、A【解析】作于利用直角三角形30度角的性质即可解决问题【详解】解:作于H垂直平分线段AB,故选A【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型8、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.9、B【解析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x10解得:x=150,即:小慧同学不凭卡购书的书价为150元故选B考点:一元一次方程的应用10、A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图二、填空题(共7小题,每小题3分,满分21分)11、增大【解析】根据二次函数的增减性可求得答案【详解】二次函数y=x2的对称轴是y轴,开口方向向上,当y随x的增大而增大.故答案为:增大.【点睛】本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.12、【解析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得【详解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,积为大于-4小于2的概率为=,故答案为:【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比13、20【解析】解:连接OB,O的直径CD垂直于AB,=,BOC=AOC=40°,BDC=AOC=×40°=20°14、300【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可底面圆的面积为100, 底面圆的半径为10,扇形的弧长等于圆的周长为20,设扇形的母线长为r, 则=20, 解得:母线长为30,扇形的面积为rl=×10×30=300考点:(1)、圆锥的计算;(2)、扇形面积的计算15、1【解析】先根据CD=20米,DE=10m得出DCE=30°,故可得出DCB=90°,再由BDF=30°可知DBE=60°,由DFAE可得出BGF=BCA=60°,故GBF=30°,所以DBC=30°,再由锐角三角函数的定义即可得出结论【详解】解:作DFAB于F,交BC于G则四边形DEAF是矩形,DE=AF=15m,DFAE, BGF=BCA=60°,BGF=GDB+GBD=60°,GDB=30°,GDB=GBD=30°,GD=GB,在RtDCE中,CD=2DE,DCE=30°,DCB=90°,DGC=BGF,DCG=BFG=90°DGCBGF,BF=DC=30m,AB=30+15=1(m),故答案为1【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键16、【解析】过点D作DFBC于点F,由菱形的性质可得BCCD,ADBC,可证四边形DEBF是矩形,可得DFBE,DEBF,在RtDFC中,由勾股定理可求DE1,DF3,由反比例函数的性质可求k的值【详解】如图,过点D作DFBC于点F,四边形ABCD是菱形,BCCD,ADBC,DEB90°,ADBC,EBC90°,且DEB90°,DFBC,四边形DEBF是矩形,DFBE,DEBF,点C的横坐标为5,BE3DE,BCCD5,DF3DE,CF5DE,CD2DF2+CF2,259DE2+(5DE)2,DE1,DFBE3,设点C(5,m),点D(1,m+3),反比例函数y图象过点C,D,5m1×(m+3),m,点C(5,),k5×,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键17、2【解析】如图,过A点作AEy轴,垂足为E,点A在双曲线上,四边形AEOD的面积为1点B在双曲线上,且ABx轴,四边形BEOC的面积为3四边形ABCD为矩形,则它的面积为312三、解答题(共7小题,满分69分)18、(1)FHE60°;(2)篮板顶端 F 到地面的距离是 4.4 米【解析】(1)直接利用锐角三角函数关系得出cosFHE=,进而得出答案;(2)延长FE交CB的延长线于M,过A作AGFM于G,解直角三角形即可得到结论【详解】(1 )由题意可得:cosFHE,则FHE60°;(2)延长 FE 交 CB 的延长线于 M,过 A 作 AGFM 于 G, 在 RtABC 中,tanACB,ABBCtan75°0.60×3.7322.2392,GMAB2.2392,在 RtAGF 中,FAGFHE60°,sinFAG,sin60°,FG2.17(m),FMFG+GM4.4(米),答:篮板顶端 F 到地面的距离是 4.4 米【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.19、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)首先根据AB=BC,BE平分ABC,得到BEAC,CE=AE,进一步得到ACD=DBF,结合CD=BD,即可证明出ADCFDB;(2)由ADCFDB得到AC=BF,结合CE=AE,即可证明出结论;(3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由DBF=GBC=GCB=ECF,得ECO=45°,结合BEAC,即可判断出ECG的形状.【详解】解:(1)AB=BC,BE平分ABCBEACCDABACD=ABE(同角的余角相等)又CD=BDADCFDB(2)AB=BC,BE平分ABCAE=CE则CE=AC由(1)知:ADCFDBAC=BFCE=BF(3)ECG为等腰直角三角形,理由如下:由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,则EGC=2CBG=ABC=45°,又BEAC,故ECG为等腰直角三角形.【点睛】本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大20、(1)m2;(2)m=1【解析】(1)利用方程有两个不相等的实数根,得=2(m-1)2-4(m2-3)=-8m+23,然后解不等式即可;(2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值【详解】(1)=2(m1)24(m23)=8m+2方程有两个不相等的实数根,3即8m+2>3 解得 m2;(2)m2,且 m 为非负整数,m=3 或 m=1,当 m=3 时,原方程为 x2-2x-3=3,解得 x1=3,x2=1(不符合题意舍去), 当 m=1 时,原方程为 x22=3,解得 x1=,x2= , 综上所述,m=1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=3(a3)的根与=b2-4ac有如下关系:当3时,方程有两个不相等的实数根;当=3时,方程有两个相等的实数根;当3时,方程无实数根21、 (1) y=x2x;(2)点P坐标为(0,)或(0,);(3).【解析】(1)根据AO=OB=2,AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP=2OC时,POC与AOE相似;(3)如图,取Q(,0)连接AQ,QE由OEQOBE,推出,推出EQ=BE,推出AE+BE=AE+QE,由AE+EQAQ,推出EA+EB的最小值就是线段AQ的长.【详解】(1)过点A作AHx轴于点H,AO=OB=2,AOB=120°,AOH=60°,OH=1,AH=,A点坐标为:(-1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,抛物线的表达式为:y=x2-x;(2)如图,C(1,-),tanEOC=,EOC=30°,POC=90°+30°=120°,AOE=120°,AOE=POC=120°,OA=2OE,OC=,当OP=OC或OP=2OC时,POC与AOE相似,OP=,OP=,点P坐标为(0,)或(0,)(3)如图,取Q(,0)连接AQ,QE ,QOE=BOE,OEQOBE,EQ=BE,AE+BE=AE+QE,AE+EQAQ,EA+EB的最小值就是线段AQ的长,最小值为【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题22、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元【解析】(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.23、(1)x19,x22;(2)x11,x2 【解析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可【详解】解:(1)x27x180,(x9)(x+2)0, x90,x+20, x19,x22;(2)3x(x1)22x,3x(x1)+2(x1)0,(x1)(3x+2)0,x10,3x+20,x11,x2 【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键24、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k=2×5=10把x=2,y=5代入y=x+b,得b=3(2)、y=x+3 当y=0时,x=-3, OB=3 S=×3×5=7.5考点:一次函数与反比例函数的综合问题.