广东省惠州市惠东燕岭学校2022-2023学年中考数学押题卷含解析.doc
-
资源ID:87993929
资源大小:866KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省惠州市惠东燕岭学校2022-2023学年中考数学押题卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)12018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A29.8×109B2.98×109C2.98×1010D0.298×10102北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A0.72×106平方米B7.2×106平方米C72×104平方米D7.2×105平方米3不等式x+13的解集是()Ax4Bx4Cx4Dx44三角形的两边长分别为3和6,第三边的长是方程x26x+80的一个根,则这个三角形的周长是()A9B11C13D11或135学完分式运算后,老师出了一道题“计算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式其中正确的是( )A小明B小亮C小芳D没有正确的6如果两圆只有两条公切线,那么这两圆的位置关系是( )A内切B外切C相交D外离7若a=,则实数a在数轴上对应的点的大致位置是()A点EB点FC点GD点H8若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )AB1CD9下列计算正确的是()A(a2)3a6Ba2a3a6Ca3+a4a7D(ab)3ab310一组数据3、2、1、2、2的众数,中位数,方差分别是( )A2,1,0.4B2,2,0.4C3,1,2D2,1,0.211在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a0)的大致图象如图所示,则下列结论正确的是()Aa0,b0,c0B=1Ca+b+c0D关于x的方程ax2+bx+c=1有两个不相等的实数根12二次函数y=-x2-4x+5的最大值是( )A-7B5C0D9二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,ABC中,AB=AC,D是AB上的一点,且AD=AB,DFBC,E为BD的中点若EFAC,BC=6,则四边形DBCF的面积为_14鼓励科技创新、技术发明,北京市20122017年专利授权量如图所示根据统计图中提供信息,预估2018年北京市专利授权量约_件,你的预估理由是_15如图,在平面直角坐标系中,反比例函数y= (x0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_16如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AEBD,垂足为点E,若EAC=2CAD,则BAE=_度 17某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为_元.18规定用符号表示一个实数的整数部分,例如:,按此规定,的值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率20(6分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由21(6分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图. (1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为 (2)请把图2(条形统计图)补充完整; (3)该校学生共600人,则参加棋类活动的人数约为 . (4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率. 22(8分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图,在中,是边上的中线,若,求证:.如图,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.23(8分)如图,已知,求证 24(10分)如图,抛物线yx2+bx+c与x轴交于点A(1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由25(10分)解方程组: 26(12分)如图,在ABCD中,BAC=90°,对角线AC,BD相交于点P,以AB为直径的O分别交BC,BD于点E,Q,连接EP并延长交AD于点F(1)求证:EF是O的切线;(2)求证:=4BPQP27(12分)如图,已知AOB=45°,ABOB,OB=1(1)利用尺规作图:过点M作直线MNOB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,且为这个数的整数位数减1,由此即可解答【详解】29.8亿用科学记数法表示为: 29.8亿=29800000002.98×1故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、D【解析】试题分析:把一个数记成a×10n(1a<10,n整数位数少1)的形式,叫做科学记数法此题可记为12×105平方米考点:科学记数法3、A【解析】根据一元一次不等式的解法,移项,合并同类项,系数化为1即可得解【详解】移项得:x31,合并同类项得:x2,系数化为1得:x-4.故选A.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握一元一次不等式的解法.4、C【解析】试题分析:先求出方程x26x80的解,再根据三角形的三边关系求解即可.解方程x26x80得x=2或x=4当x=2时,三边长为2、3、6,而2+36,此时无法构成三角形当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13故选C.考点:解一元二次方程,三角形的三边关系点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.5、C【解析】试题解析: = =1所以正确的应是小芳故选C6、C【解析】两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线【详解】根据两圆相交时才有2条公切线故选C【点睛】本题考查了圆与圆的位置关系熟悉两圆的不同位置关系中的外公切线和内公切线的条数7、C【解析】根据被开方数越大算术平方根越大,可得答案【详解】解:,34,a=,3a4,故选:C【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出34是解题关键8、A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根9、A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型理解各种计算法则是解题的关键10、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为(3+2+1+2+2)÷5=2,方差为 (3-2)2+3×(2-2)2+(1-2)2=0.1,即中位数是2,众数是2,方差为0.1故选B11、D【解析】试题分析:根据图像可得:a0,b0,c0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=1时有两个交点,即有两个不相等的实数根,则正确,故选D12、D【解析】直接利用配方法得出二次函数的顶点式进而得出答案【详解】y=x24x+5=(x+2)2+9,即二次函数y=x24x+5的最大值是9,故选D【点睛】此题主要考查了二次函数的最值,正确配方是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】解:如图,过D点作DGAC,垂足为G,过A点作AHBC,垂足为H,AB=AC,点E为BD的中点,且AD=AB,设BE=DE=x,则AD=AF=1xDGAC,EFAC,DGEF,即,解得DFBC,ADFABC,即,解得DF=1又DFBC,DFG=C,RtDFGRtACH,即,解得在RtABH中,由勾股定理,得又ADFABC,故答案为:214、113407, 北京市近两年的专利授权量平均每年增加6458.5件. 【解析】依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.【详解】解:北京市近两年的专利授权量平均每年增加:(件),预估2018年北京市专利授权量约为1069486458.5113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件【点睛】此题考查统计图的意义,解题的关键在于看懂图中数据.15、1【解析】连接OB,由矩形的性质和已知条件得出OBD的面积=OBE的面积=四边形ODBE的面积,再求出OCE的面积为2,即可得出k的值【详解】连接OB,如图所示:四边形OABC是矩形,OAD=OCE=DBE=90°,OAB的面积=OBC的面积,D、E在反比例函数y=(x>0)的图象上,OAD的面积=OCE的面积,OBD的面积=OBE的面积=四边形ODBE的面积=1,BE=2EC,OCE的面积=OBE的面积=2,k=1故答案为:1【点睛】本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 |k|,且保持不变16、22.5°【解析】四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OBOC,OAD=ODA,OAB=OBA,AOE=OAD+ODA=2OAD,EAC=2CAD,EAO=AOE,AEBD,AEO=90°,AOE=45°,OAB=OBA=67.5°,即BAE=OABOAE=22.5°考点:矩形的性质;等腰三角形的性质17、28【解析】设标价为x元,那么0.9x-21=21×20%,x=28.18、4【解析】根据规定,取的整数部分即可.【详解】,整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)150;(2)详见解析;(3).【解析】(1)用A类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解【详解】解:(1)15÷10%=150,所以共调查了150名学生;(2)喜欢“立定跳远”学生的人数为150156030=45,喜欢“立定跳远”的学生所占百分比为120%40%10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,所以刚好抽到不同性别学生的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图20、(1)见解析;(2)AFCE,见解析.【解析】(1)直接利用全等三角三角形判定与性质进而得出FOCEOA(ASA),进而得出答案; (2)利用平行四边形的判定与性质进而得出答案【详解】(1)证明:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,AO=CO,DCAB,DC=AB,FCA=CAB,在FOC和EOA中,FOCEOA(ASA),FC=AE,DC-FC=AB-AE,即DF=EB;(2)AFCE,理由:FC=AE,FCAE,四边形AECF是平行四边形,AFCE【点睛】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出FOCEOA(ASA)是解题关键21、(1)7、30%;(2)补图见解析;(3)105人;(3) 【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解试题解析:解:(1)本次调查的总人数为10÷25%=40(人),参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22、(1)详见解析;(2)详见解析;(3)【解析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;(3)先判断出ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论【详解】(1)AD=BD,B=BAD,AD=CD,C=CAD,在ABC中,B+C+BAC=180°,B+C+BAD+CAD=B+C+B+C=180°B+C=90°,BAC=90°,(2)如图,连接与,交点为,连接四边形是矩形(3)如图3,过点做于点四边形是矩形,是等边三角形,由(2)知,在中,【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出B=BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出ABE是底角为30°的等腰三角形,进而构造直角三角形23、见解析【解析】根据ABD=DCA,ACB=DBC,求证ABC=DCB,然后利用AAS可证明ABCDCB,即可证明结论【详解】证明:ABD=DCA,DBC=ACBABD+DBC=DCA+ACB即ABC=DCB在ABC和DCB中 ABCDCB(ASA)AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证ABCDCB难度不大,属于基础题24、 (1) ;(2) 当m2时,四边形CQMD为平行四边形;(3) Q1(8,18)、Q2(1,0)、Q3(3,2)【解析】(1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:yx+2,设点M(m,m+2),Q(m,m2m2),可得MQ=m2+m+4,根据平行四边形的性质可得QM=CD=4,即m2+m+44可解得m=2;(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,当BDQ=90°时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),当DBQ=90°时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2)【详解】(1)由题意知,点A(1,0),B(4,0)在抛物线yx2+bx+c上,解得:所求抛物线的解析式为 (2)由(1)知抛物线的解析式为,令x0,得y2点C的坐标为C(0,2)点D与点C关于x轴对称点D的坐标为D(0,2)设直线BD的解析式为:ykx+2且B(4,0)04k+2,解得:直线BD的解析式为:点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q可设点M,Q MQ四边形CQMD是平行四边形QMCD4,即=4解得:m12,m20(舍去)当m2时,四边形CQMD为平行四边形(3)由题意,可设点Q且B(4,0)、D(0,2)BQ2 DQ2 BD220当BDQ90°时,则BD2+DQ2BQ2, 解得:m18,m21,此时Q1(8,18),Q2(1,0)当DBQ90°时,则BD2+BQ2DQ2, 解得:m33,m44,(舍去)此时Q3(3,2)满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(1,0)、Q3(3,2)【点睛】此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解25、【解析】方程组整理后,利用加减消元法求出解即可【详解】解:方程组整理得: +得:9x=-45,即x=-5,把x=-代入得: 解得:则原方程组的解为【点睛】本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法26、(1)证明见解析;(2)证明见解析【解析】试题分析:(1)连接OE,AE,由AB是O的直径,得到AEB=AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出OEP=OAC=90°,根据切线的判定定理即可得到结论;(2)由AB是O的直径,得到AQB=90°根据相似三角形的性质得到=PBPQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论试题解析:(1)连接OE,AE,AB是O的直径,AEB=AEC=90°,四边形ABCD是平行四边形,PA=PC,PA=PC=PE,PAE=PEA,OA=OE,OAE=OEA,OEP=OAC=90°,EF是O的切线;(2)AB是O的直径,AQB=90°,APQBPA,=PBPQ,在AFP与CEP中,PAF=PCE,APF=CPE,PA=PC,AFPCEP,PF=PE,PA=PE=EF,=4BPQP考点:切线的判定;平行四边形的性质;相似三角形的判定与性质27、(1)详见解析;(1).【解析】(1)以点M为顶点,作AMN=O即可; (1)由AOB=45°,ABOB,可知AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【详解】(1)作图如图所示;(1)由题知AOB为等腰RtAOB,且OB=1,所以,AO=OB=1又M为OA的中点,所以,AM=1=【点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明AOB为等腰为等腰直角三角形是解(1)的关键.