广东省广州市番禺区2023届中考数学押题卷含解析.doc
-
资源ID:87994041
资源大小:885.50KB
全文页数:22页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省广州市番禺区2023届中考数学押题卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )ABCD2据关于“十三五”期间全面深入推进教育信息化工作的指导意见显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程则数字6000万用科学记数法表示为()A6×105B6×106C6×107D6×1083下列事件中是必然事件的是()A早晨的太阳一定从东方升起B中秋节的晚上一定能看到月亮C打开电视机,正在播少儿节目D小红今年14岁,她一定是初中学生4已知O的半径为13,弦ABCD,AB=24,CD=10,则四边形ACDB的面积是()A119B289C77或119D119或2895计算的结果等于( )A-5B5CD6某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()ABCD7如图,4张如图1的长为a,宽为b(ab)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S22S1,则a,b满足()AaBa2bCabDa3b8如图,在直角坐标系中,有两点A(6,3)、B(6,0)以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )A(2,1)B(2,0)C(3,3)D(3,1)9下列成语描述的事件为随机事件的是()A水涨船高 B守株待兔 C水中捞月 D缘木求鱼10下列事件中,必然事件是()A抛掷一枚硬币,正面朝上B打开电视,正在播放广告C体育课上,小刚跑完1000米所用时间为1分钟D袋中只有4个球,且都是红球,任意摸出一球是红球11如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是( )A1B2C5D612下列计算正确的是()A2a2a21B(ab)2ab2Ca2+a3a5D(a2)3a6二、填空题:(本大题共6个小题,每小题4分,共24分)13已知A(x1,y1),B(x2,y2)都在反比例函数y的图象上若x1x24,则y1y2的值为_14在正方形中,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,则和之间的关系是_(用含的代数式表示)15在实数范围内分解因式:x2y2y_16因式分解:-2x2y+8xy-6y=_17如图,在矩形ABCD中,AB=2,AD=6,EF分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为_18不等式-2x+3>0的解集是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:销售时段销售数量销售收入种型号种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润销售收入进货成本)(1)求、两种型号的电器的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.20(6分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A由父母一方照看;B由爷爷奶奶照看;C由叔姨等近亲照看;D直接寄宿学校某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?21(6分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN22(8分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C(1)当A(1,0),C(0,3)时,求抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点当点P关于原点的对称点P落在直线BC上时,求m的值;当点P关于原点的对称点P落在第一象限内,PA2取得最小值时,求m的值及这个最小值23(8分) 如图,在平面直角坐标系中,抛物线yx2+bx+c(a0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(1,0),抛物线的对称轴直线x交x轴于点D(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角(0°90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由24(10分)如图,抛物线y=ax2+bx+c(a0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标25(10分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得APl作法:如图在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C连接AC,AB,延长BA到点D;作DAC的平分线AP所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:ABAC,ABCACB (填推理的依据)DAC是ABC的外角,DACABC+ACB (填推理的依据)DAC2ABCAP平分DAC,DAC2DAPDAPABCAPl (填推理的依据)26(12分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?27(12分)如图,在ABC中,AB=AC,AE是角平分线,BM平分ABC交AE于点M,经过B、M两点的O交BC于点G,交AB于点F,FB恰为O的直径(1)判断AE与O的位置关系,并说明理由;(2)若BC=6,AC=4CE时,求O的半径参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据中心对称图形的定义解答即可.【详解】选项A不是中心对称图形;选项B不是中心对称图形;选项C不是中心对称图形;选项D是中心对称图形.故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.2、C【解析】将一个数写成的形式,其中,n是正数,这种记数的方法叫做科学记数法,根据定义解答即可.【详解】解:6000万6×1故选:C【点睛】此题考查科学记数法,当所表示的数的绝对值大于1时,n为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n的值的确定是解题的关键.3、A【解析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解【详解】解:B、C、D选项为不确定事件,即随机事件故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起故选A【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件4、D【解析】分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【详解】解:当弦AB和CD在圆心同侧时,如图1,AB=24cm,CD=10cm,AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=12-5=7cm;四边形ACDB的面积 当弦AB和CD在圆心异侧时,如图2,AB=24cm,CD=10cm,.AE=12cm,CF=5cm,OA=OC=13cm,EO=5cm,OF=12cm,EF=OF+OE=17cm.四边形ACDB的面积四边形ACDB的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.5、A【解析】根据有理数的除法法则计算可得【详解】解:15÷(-3)=-(15÷3)=-5,故选:A【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除6、B【解析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:故选B【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程7、B【解析】从图形可知空白部分的面积为S2是中间边长为(ab)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S22S1,便可得解【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,S22S1,a2+2b22(2abb2),a24ab+4b20,即(a2b)20,a2b,故选B【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解8、A【解析】根据位似变换的性质可知,ODCOBA,相似比是,根据已知数据可以求出点C的坐标【详解】由题意得,ODCOBA,相似比是,又OB=6,AB=3,OD=2,CD=1,点C的坐标为:(2,1),故选A【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用9、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B考点:随机事件.10、D【解析】试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.11、C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案详解:数据1,2,x,5,6的众数为6,x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.12、D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2a2a2,故A错误;B、(ab)2a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3a6,故D正确,故选D【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据反比例函数图象上点的坐标特征得到 再把它们相乘,然后把代入计算即可【详解】根据题意得所以故答案为:1.【点睛】考查反比例函数图象上点的坐标特征,把点的坐标代入反比例函数解析式得到是解题的关键.14、或【解析】当F在边AB上时,如图1作辅助线,先证明,得,根据正切的定义表示即可;当F在BA的延长线上时,如图2,同理可得:,表示AF的长,同理可得结论【详解】解:分两种情况:当F在边AB上时,如图1,过E作,交AB于G,交DC于H,四边形ABCD是正方形,中,即;当F在BA的延长线上时,如图2,同理可得:,中,【点睛】本题考查了正方形的性质、三角形全等的性质和判定、三角函数等知识,熟练掌握正方形中辅助线的作法是关键,并注意F在直线AB上,分类讨论15、y(x+)(x) 【解析】先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解【详解】x2y-2y=y(x2-2)=y(x+)(x-)故答案为y(x+)(x-)【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止16、2 y (x1)( x3) 【解析】分析:提取公因式法和十字相乘法相结合因式分解即可.详解:原式 故答案为点睛:本题主要考查因式分解,熟练掌握提取公因式法和十字相乘法是解题的关键.分解一定要彻底.17、1或12【解析】当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值【详解】解:如图1所示:由翻折的性质可知PF=CF=1,ABFE为正方形,边长为2,AF=2PA=12如图2所示:由翻折的性质可知PF=FC=1ABFE为正方形,BE为AF的垂直平分线AP=PF=1故答案为:1或12【点睛】本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键18、x<【解析】根据解一元一次不等式基本步骤:移项、系数化为1可得【详解】移项,得:-2x-3,系数化为1,得:x,故答案为x【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台【解析】(1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;(2)设采购A种型号电器a台,则采购B种型号电器(50a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案【详解】解:(1)设A型电器销售单价为x元,B型电器销售单价y元,则 ,解得:,答:A型电器销售单价为200元,B型电器销售单价150元;(2)设A型电器采购a台,则160a120(50a)7500,解得:a,则最多能采购37台;(3)设A型电器采购a台,依题意,得:(200160)a(150120)(50a)1850,解得:a35,则35a,a是正整数,a36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解20、(1)10,144;(2)详见解析;(3)96【解析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益【详解】解:(1)2÷20%10(人),×100%×360°144°,故答案为10,144;(2)102422(人),如图所示:(3)2400××20%96(人),答:估计该校将有96名留守学生在此关爱活动中受益【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据21、证明见解析.【解析】试题分析:作于点F,然后证明 ,从而求出所所以BM与CN的长度相等试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EFBC于点F,则有AB=AE=EF=FC, AEM=FEN,在RtAME和RtFNE中,E为AB的中点,AB=CF,AEM=FEN,AE=EF,MAE=NFE,RtAMERtFNE,AM=FN,MB=CN.22、(1)抛物线的解析式为y=x33x1,顶点坐标为(1,4);(3)m=;PA3取得最小值时,m的值是,这个最小值是【解析】(1)根据A(1,3),C(3,1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;(3)根据题意可以得到点P的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P落在直线BC上,从而可以求得m的值;根据题意可以表示出PA3,从而可以求得当PA3取得最小值时,m的值及这个最小值【详解】解:(1)抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(1,3),C(3,1),解得:,该抛物线的解析式为y=x33x1y=x33x1=(x1)34,抛物线的顶点坐标为(1,4);(3)由P(m,t)在抛物线上可得:t=m33m1点P和P关于原点对称,P(m,t),当y=3时,3=x33x1,解得:x1=1,x3=1,由已知可得:点B(1,3)点B(1,3),点C(3,1),设直线BC对应的函数解析式为:y=kx+d,解得:,直线BC的直线解析式为y=x1点P落在直线BC上,t=m1,即t=m+1,m33m1=m+1,解得:m=;由题意可知,点P(m,t)在第一象限,m3,t3,m3,t3二次函数的最小值是4,4t3点P(m,t)在抛物线上,t=m33m1,t+1=m33m,过点P作PHx轴,H为垂足,有H(m,3)又A(1,3),则PH3=t3,AH3=(m+1)3在RtPAH中,PA3=AH3+PH3,PA3=(m+1)3+t3=m33m+1+t3=t3+t+4=(t+)3+,当t=时,PA3有最小值,此时PA3=,=m33m1,解得:m=m3,m=,即PA3取得最小值时,m的值是,这个最小值是【点睛】本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答23、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5)【解析】(1)设B(x1,5),由已知条件得 ,进而得到B(2,5)又由对称轴求得b最终得到抛物线解析式.(1)先求出直线BC的解析式,再设E(m,m+1),F(m,m1+m+1)求得FE的值,得到SCBFm1+2m又由S四边形CDBFSCBF+SCDB,得S四边形CDBF最大值, 最终得到E点坐标(3)设N点为(n,n1+n+1),1n2过N作NOx轴于点P,得PGn1又由直角三角形的判定,得ABC为直角三角形,由ABCGNP, 得n1+或n1(舍去),求得P点坐标又由ABCGNP,且时,得n3或n2(舍去)求得P点坐标【详解】解:(1)设B(x1,5)由A(1,5),对称轴直线x 解得,x12B(2,5)又b抛物线解析式为y ,(1)如图1,B(2,5),C(5,1)直线BC的解析式为yx+1由E在直线BC上,则设E(m,m+1),F(m,m1+m+1)FEm1+m+1(n+1)m1+1m由SCBFEFOB,SCBF(m1+1m)×2m1+2m又SCDBBDOC×(2)×1 S四边形CDBFSCBF+SCDBm1+2m+化为顶点式得,S四边形CDBF(m1)1+ 当m1时,S四边形CDBF最大,为此时,E点坐标为(1,1)(3)存在如图1,由线段FG绕点G顺时针旋转一个角(5°95°),设N(n,n1+n+1),1n2过N作NOx轴于点P(n,5)NPn1+n+1,PGn1又在RtAOC中,AC1OA1+OC11+25,在RtBOC中,BC1OB1+OC116+215AB15115AC1+BC1AB1ABC为直角三角形当ABCGNP,且时,即, 整理得,n11n65解得,n1+ 或n1(舍去)此时P点坐标为(1+,5)当ABCGNP,且时,即, 整理得,n1+n115解得,n3或n2(舍去)此时P点坐标为(3,5)综上所述,满足题意的P点坐标可以为,(1+,5),(3,5)【点睛】本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.24、 (1)、y=+x+4;(2)、不存在,理由见解析.【解析】试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.试题解析:(1)、抛物线y=a+bx+c(a0)过点C(0,4) C=4=1 b=2a 抛物线过点A(2,0) 4a2b+c="0" 由解得:a=,b=1,c=4 抛物线的解析式为:y=+x+4(2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FHx轴于点H,FGy轴于点G. 设点F的坐标为(t,+t+4),其中0t4 则FH=+t+4 FG=tOBF的面积=OB·FH=×4×(+t+4)=+2t+8 OFC的面积=OC·FG=2t四边形ABFC的面积=AOC的面积+OBF的面积+OFC的面积=+4t+12令+4t+12=17 即+4t5=0 =1620=40 方程无解不存在满足条件的点F考点:二次函数的应用25、 (1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行)【解析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得【详解】解:(1)如图所示,直线AP即为所求(2)证明:ABAC,ABCACB(等边对等角),DAC是ABC的外角,DACABC+ACB(三角形外角性质),DAC2ABC,AP平分DAC,DAC2DAP,DAPABC,APl(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行)【点睛】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定26、周瑜去世的年龄为16岁【解析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1根据题意建立方程求出其值就可以求出其结论【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1由题意得;10(x1)+xx2,解得:x15,x26当x5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x6时,周瑜年龄为16岁,完全符合题意答:周瑜去世的年龄为16岁【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键27、(1)AE与O相切理由见解析.(2)2.1【解析】(1)连接OM,则OM=OB,利用平行的判定和性质得到OMBC,AMO=AEB,再利用等腰三角形的性质和切线的判定即可得证;(2)设O的半径为r,则AO=12r,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证AOMABE,根据相似三角形的性质即可求解.【详解】解:(1)AE与O相切理由如下:连接OM,则OM=OB,OMB=OBM,BM平分ABC,OBM=EBM,OMB=EBM,OMBC,AMO=AEB,在ABC中,AB=AC,AE是角平分线,AEBC,AEB=90°,AMO=90°,OMAE,AE与O相切;(2)在ABC中,AB=AC,AE是角平分线,BE=BC,ABC=C,BC=6,cosC=,BE=3,cosABC=,在ABE中,AEB=90°,AB=12,设O的半径为r,则AO=12r,OMBC,AOMABE,=,解得:r=2.1,O的半径为2.1