广东省湛江二中学2023年中考数学押题试卷含解析.doc
-
资源ID:87994212
资源大小:932KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省湛江二中学2023年中考数学押题试卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,AB是O的一条弦,点C是O上一动点,且ACB=30°,点E,F分别是AC,BC的中点,直线EF与O交于G,H两点,若O的半径为6,则GE+FH的最大值为()A6B9C10D122在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得ABC为等腰直角三角形,则这样的点C有( )A6个B7个C8个D9个3如图,在ABC中,EFBC,S四边形BCFE=8,则SABC=( )A9B10C12D134二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)5如图,直线ab,一块含60°角的直角三角板ABC(A60°)按如图所示放置若155°,则2的度数为()A105°B110°C115°D120°6已知关于x,y的二元一次方程组的解为,则a2b的值是()A2B2C3D37如图,直线AB与半径为2的O相切于点C,D是O上一点,且EDC=30°,弦EFAB,则EF的长度为( )A2B2CD28自2013年10月总书记提出“精准扶贫”的重要思想以来各地积极推进精准扶贫,加大帮扶力度全国脱贫人口数不断增加仅2017年我国减少的贫困人口就接近1100万人将1100万人用科学记数法表示为()A1.1×103人B1.1×107人C1.1×108人D11×106人9二次函数y=-x2-4x+5的最大值是( )A-7B5C0D910下列各式计算正确的是( )ABCD11如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上若AB=6,AD=9,则五边形ABMND的周长为()A28B26C25D2212下列图形中,是轴对称图形但不是中心对称图形的是()A直角梯形 B平行四边形 C矩形 D正五边形二、填空题:(本大题共6个小题,每小题4分,共24分)13某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.14受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_15同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_16如图,把ABC绕点C按顺时针方向旋转35°,得到ABC,AB交AC于点D,若ADC=90°,则A= °.17如图,ABC中,DE垂直平分AC交AB于E,A=30°,ACB=80°,则BCE=_ °18如图,菱形ABCD的边ADy轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y(k0,x0)的图象经过顶点C、D,若点C的横坐标为5,BE3DE,则k的值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;把A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长20(6分)如图1,菱形ABCD,AB=4,ADC=120o,连接对角线AC、BD交于点O, (1)如图2,将AOD沿DB平移,使点D与点O重合,求平移后的ABO与菱形ABCD重合部分的面积.(2)如图3,将ABO绕点O逆时针旋转交AB于点E,交BC于点F,求证:BE+BF=2,求出四边形OEBF的面积. 21(6分)已知:如图所示,抛物线y=x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)(1)求抛物线的表达式;(2)设点P在该抛物线上滑动,且满足条件SPAB=1的点P有几个?并求出所有点P的坐标22(8分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB4米,BCA30°,且B、C、D 三点在同一直线上(1)求树DE的高度;(2)求食堂MN的高度23(8分)如图,二次函数的图像与轴交于、两点,与轴交于点,点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点求、的值;如图,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由24(10分)如图,在O的内接四边形ABCD中,BCD=120°,CA平分BCD(1)求证:ABD是等边三角形;(2)若BD=3,求O的半径25(10分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离(参考数据:tan37°=cot53°0.755,cot37°=tan53°1.327,tan32°=cot58°0.625,cot32°=tan58°1.1)26(12分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示,设点B所表示的数为m求m的值;求|m1|+(m+6)0的值27(12分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A求抛物线顶点M的坐标;若点A的坐标为,轴,交抛物线于点B,求点B的坐标;在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】首先连接OA、OB,根据圆周角定理,求出AOB=2ACB=60°,进而判断出AOB为等边三角形;然后根据O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可【详解】解:如图,连接OA、OB,ACB=30°,AOB=2ACB=60°,OA=OB,AOB为等边三角形,O的半径为6,AB=OA=OB=6,点E,F分别是AC、BC的中点,EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,当弦GH是圆的直径时,它的最大值为:6×2=12,GE+FH的最大值为:123=1故选:B【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度确定GH的位置是解题的关键.2、A【解析】根据题意,结合图形,分两种情况讨论:AB为等腰ABC底边;AB为等腰ABC其中的一条腰【详解】如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的C点有2个;AB为等腰直角ABC其中的一条腰时,符合条件的C点有4个故选:C【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解数形结合的思想是数学解题中很重要的解题思想3、A【解析】由在ABC中,EFBC,即可判定AEFABC,然后由相似三角形面积比等于相似比的平方,即可求得答案【详解】,又EFBC,AEFABC1SAEF=SABC又S四边形BCFE=8,1(SABC8)=SABC,解得:SABC=1故选A4、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质5、C【解析】如图,首先证明AMO=2,然后运用对顶角的性质求出ANM=55°;借助三角形外角的性质求出AMO即可解决问题【详解】如图,对图形进行点标注.直线ab,AMO=2;ANM=1,而1=55°,ANM=55°,2=AMO=A+ANM=60°+55°=115°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.6、B【解析】把代入方程组得:,解得:,所以a2b=2×()=2.故选B.7、B【解析】本题考查的圆与直线的位置关系中的相切连接OC,EC所以EOC=2D=60°,所以ECO为等边三角形又因为弦EFAB所以OC垂直EF故OEF=30°所以EF=OE=28、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:1100万=11000000=1.1×107.故选B.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、D【解析】直接利用配方法得出二次函数的顶点式进而得出答案【详解】y=x24x+5=(x+2)2+9,即二次函数y=x24x+5的最大值是9,故选D【点睛】此题主要考查了二次函数的最值,正确配方是解题关键10、B【解析】A选项中,不是同类二次根式,不能合并,本选项错误;B选项中,本选项正确;C选项中,而不是等于,本选项错误;D选项中,本选项错误;故选B.11、A【解析】如图,运用矩形的性质首先证明CN=3,C=90°;运用翻折变换的性质证明BM=MN(设为),运用勾股定理列出关于的方程,求出,即可解决问题【详解】如图,由题意得:BM=MN(设为),CN=DN=3;四边形ABCD为矩形,BC=AD=9,C=90°,MC=9-;由勾股定理得:2=(9-)2+32,解得:=5,五边形ABMND的周长=6+5+5+3+9=28,故选A【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答12、D【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解详解:A直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误; B平行四边形不是轴对称图形,是中心对称图形,故此选项错误; C矩形是轴对称图形,也是中心对称图形,故此选项错误; D正五边形是轴对称图形,不是中心对称图形,故此选项正确 故选D点睛:本题考查了轴对称图形和中心对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合二、填空题:(本大题共6个小题,每小题4分,共24分)13、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年平均每年绿地面积的增长率为10%故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)1=现在的量,增长用+,减少用-但要注意解的取舍,及每一次增长的基础14、5.5×1【解析】分析:科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数详解:5.5亿=5 5000 0000=5.5×1,故答案为5.5×1点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值15、50°【解析】【分析】直接利用圆周角定理进行求解即可【详解】弧AB所对的圆心角是100°,弧AB所对的圆周角为50°,故答案为:50°【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半16、55.【解析】试题分析:把ABC绕点C按顺时针方向旋转35°,得到ABCACA=35°,A =A,.ADC=90°,A =55°. A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.17、1【解析】根据ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出ACE=A=30°,再根据ACB=80°即可解答【详解】DE垂直平分AC,A=30°,AE=CE,ACE=A=30°,ACB=80°,BCE=80°-30°=1°故答案为:118、【解析】过点D作DFBC于点F,由菱形的性质可得BCCD,ADBC,可证四边形DEBF是矩形,可得DFBE,DEBF,在RtDFC中,由勾股定理可求DE1,DF3,由反比例函数的性质可求k的值【详解】如图,过点D作DFBC于点F,四边形ABCD是菱形,BCCD,ADBC,DEB90°,ADBC,EBC90°,且DEB90°,DFBC,四边形DEBF是矩形,DFBE,DEBF,点C的横坐标为5,BE3DE,BCCD5,DF3DE,CF5DE,CD2DF2+CF2,259DE2+(5DE)2,DE1,DFBE3,设点C(5,m),点D(1,m+3),反比例函数y图象过点C,D,5m1×(m+3),m,点C(5,),k5×,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算20、 (1);(2)2,【解析】分析:(1)重合部分是等边三角形,计算出边长即可.证明:在图3中,取AB中点E,证明,即可得到 ,由知,在旋转过程60°中始终有四边形的面积等于 =.详解:(1)四边形为菱形, 为等边三角形 AD/ 为等边三角形,边长 重合部分的面积:证明:在图3中,取AB中点E,由上题知, 又 , ,由知,在旋转过程60°中始终有 四边形的面积等于=.点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.21、 (1)y=x2+4x3;(2)满足条件的P点坐标有3个,它们是(2,1)或(2+,1)或(2,1)【解析】(1)由于已知抛物线与x轴的交点坐标,则可利用交点式求出抛物线解析式;(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到 2|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标.【详解】解:(1)抛物线解析式为y=(x1)(x3)=x2+4x3;(2)设P(t,t2+4t3),因为SPAB=1,AB=31=2,所以2|t2+4t3|=1,当t2+4t3=1时,t1=t2=2,此时P点坐标为(2,1);当t2+4t3=1时,t1=2+,t2=2,此时P点坐标为(2+,1)或(2,1),所以满足条件的P点坐标有3个,它们是(2,1)或(2+,1)或(2,1)【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.22、(1)12米;(2)(2+8)米【解析】(1)设DEx,先证明ACE是直角三角形,CAE60°,AEC30°,得到AE16,根据EF=8求出x的值得到答案;(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用NDP45°得到NP,即可求出MN.【详解】(1)如图,设DEx,ABDF4,ACB30°,AC8,ECD60°,ACE是直角三角形,AFBD,CAF30°,CAE60°,AEC30°,AE16,RtAEF中,EF8,即x48,解得x12,树DE的高度为12米;(2)延长NM交DB延长线于点P,则AMBP6,由(1)知CDCE×AC4,BC4,PDBP+BC+CD6+4+46+8,NDP45°,且NPD90°,NPPD6+8,NMNPMP6+842+8,食堂MN的高度为(2+8)米【点睛】此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.23、(1),;(2)点的坐标为;(3)点的坐标为和【解析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,抛物线对称轴为直线点的坐标为解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.24、(1)详见解析;(2).【解析】(1)因为AC平分BCD,BCD120°,根据角平分线的定义得:ACDACB60°,根据同弧所对的圆周角相等,得ACDABD,ACBADB,ABDADB60°.根据三个角是60°的三角形是等边三角形得ABD是等边三角形.(2)作直径DE,连结BE,由于ABD是等边三角形,则BAD60°,由同弧所对的圆周角相等,得BEDBAD60°.根据直径所对的圆周角是直角得,EBD90°,则EDB30°,进而得到DE2BE.设EBx,则ED2x,根据勾股定理列方程求解即可.【详解】解:(1)BCD=120°,CA平分BCD,ACD=ACB=60°,由圆周角定理得,ADB=ACB=60°,ABD=ACD=60°,ABD是等边三角形;(2)连接OB、OD,作OHBD于H,则DH=BD=,BOD=2BAD=120°,DOH=60°,在RtODH中,OD=,O的半径为【点睛】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.25、10【解析】试题分析:如图:过点C作CDAB于点D,在RtACD中,利用ACD的正切可得AD=0.625CD,同样在RtBCD中,可得BD= 0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C作CDAB于点D,由已知可得:ACD=32°,BCD =37°,在RtACD中,ADC=90°,AD=CD·tanACD=CD·tan32°=0.625CD,在RtBCD中,BDC=90°,BD=CD·tanBCD=CD·tan37°=0.755CD,AB=BD-CD=780,0.755CD-0.625CD=780,CD=10,答:小岛到海岸线的距离是10米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.26、(1)2- ;(2)【解析】试题分析: 点表示 向右直爬2个单位到达点,点表示的数为 把的值代入,对式子进行化简即可试题解析: 由题意点和点的距离为,其点的坐标为 因此点坐标把的值代入得: 27、(1)M的坐标为;(2)B(4,3);(3)或【解析】利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案 根据抛物线的对称性质解答;利用待定系数法求得抛物线的表达式为根据题意作出图象G,结合图象求得m的取值范围【详解】解:(1) ,该抛物线的顶点M的坐标为;由知,该抛物线的顶点M的坐标为;该抛物线的对称轴直线是,点A的坐标为,轴,交抛物线于点B,点A与点B关于直线对称,;抛物线与y轴交于点,抛物线的表达式为抛物线G的解析式为:由由,得:抛物线与x轴的交点C的坐标为,点C关于y轴的对称点的坐标为把代入,得:把代入,得:所求m的取值范围是或故答案为(1)M的坐标为;(2)B(4,3);(3)或【点睛】本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G的图象是解题的关键