欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    广东省深圳中学2022-2023学年中考三模数学试题含解析.doc

    • 资源ID:87994316       资源大小:800KB        全文页数:17页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    广东省深圳中学2022-2023学年中考三模数学试题含解析.doc

    2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1点A(1,),B(2,)在反比例函数的图象上,则,的大小关系是( )AB=CD不能确定2将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )ABCD3如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M,连接MB,DM则图中的全等三角形共有( )A3对B4对C5对D6对4如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BEDF的是()AAECFBBEDFCEBFFDEDBEDBFD5如下字体的四个汉字中,是轴对称图形的是( )ABCD6估计介于( )A0与1之间B1与2之间C2与3之间D3与4之间7下列各式中正确的是()A =±3 B =3 C =3 D8一元二次方程x2+kx3=0的一个根是x=1,则另一个根是( )A3B1C3D29甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A=B=C=D=10如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互余的角是()AADCBABDCBACDBAD11如图1,在矩形ABCD中,动点E从A出发,沿ABBC方向运动,当点E到达点C时停止运动,过点E做FEAE,交CD于F点,设点E运动路程为x,FCy,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()AB5C6D12cos30°=( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知关于 x 的函数 y=(m1)x2+2x+m 图象与坐标轴只有 2 个交点,则m=_14两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有_千米.15点A(a,3)与点B(4,b)关于原点对称,则a+b()A1B4C4D116如图,在四边形ABCD中,ABAD,BADBCD90°,连接AC、BD,若S四边形ABCD18,则BD的最小值为_17地球上的海洋面积约为361000000km1,则科学记数法可表示为_km118已知b是a,c的比例中项,若a=4,c=16,则b=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,(1)求抛物线的解析式;(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。20(6分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b为 米若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式登山多长时间时,甲、乙两人距地面的高度差为50米?21(6分)如图,ABC内接与O,AB是直径,O的切线PC交BA的延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF(1)判断AF与O的位置关系并说明理由;(2)若O的半径为4,AF=3,求AC的长22(8分) “垃圾不落地,城市更美丽”某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项要求每位被调查的学生必须从以上三项中选一项且只能选一项现将调查结果绘制成以下来不辜负不完整的统计图请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生“是否随手丢垃圾”情况的众数是 ;(3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?23(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF求证:(1)ABECDF;(2)四边形BFDE是平行四边形24(10分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍且购买一个乙种足球比购买一个甲种足球多花20元;求购买一个甲种足球、一个乙种足球各需多少元;2018年这所学校决定再次购买甲、乙两种足球共50个恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?25(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同(1)求购买一个A种品牌、一个B种品牌的足球各需多少元(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?26(12分)如图,一次函数ykxb的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OAOB(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y2xn于点M,交反比例函数的图象于点N,若NMNP,求n的值27(12分)化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题分析:对于反比例函数y=,当k0时,在每一个象限内,y随x的增大而减小,根据题意可得:12,则考点:反比例函数的性质2、C【解析】试题分析:抛物线向右平移1个单位长度,平移后解析式为:,再向上平移1个单位长度所得的抛物线解析式为:故选C考点:二次函数图象与几何变换3、D【解析】根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.【详解】图中图中的全等三角形有ABMCDM,ABDCDB, OBMODM,OBMODM, MBMMDM, DBMBDM,故选D.【点睛】此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.4、B【解析】由四边形ABCD是平行四边形,可得AD/BC,AD=BC,然后由AE=CF,EBF=FDE,BED=BFD均可判定四边形BFDE是平行四边形,则可证得BE/DF,利用排除法即可求得答案【详解】四边形ABCD是平行四边形,AD/BC,AD=BC,A、AE=CF,DE=BF,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;B、BE=DF,四边形BFDE是等腰梯形,本选项不一定能判定BE/DF;C、AD/BC,BED+EBF=180°,EDF+BFD=180°,EBF=FDE,BED=BFD,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;D、AD/BC,BED+EBF=180°,EDF+BFD=180°,BED=BFD,EBF=FDE,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF故选B【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键5、A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形故选A考点:轴对称图形6、C【解析】解:,即估计在23之间故选C【点睛】本题考查估计无理数的大小7、D【解析】原式利用平方根、立方根定义计算即可求出值【详解】解:A、原式=3,不符合题意;B、原式=|-3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2-=,符合题意,故选:D【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键8、C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根设m、n是方程x2+kx3=0的两个实数根,且m=x=1;则有:mn=3,即n=3;故选C【考点】根与系数的关系;一元二次方程的解9、A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=故选A点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键10、D【解析】ACD对的弧是,对的另一个圆周角是ABD,ABD=ACD(同圆中,同弧所对的圆周角相等),又AB为直径,ADB=90°,ABD+BAD=90°,即ACD+BAD=90°,与ACD互余的角是BAD.故选D.11、B【解析】易证CFEBEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题【详解】若点E在BC上时,如图EFC+AEB90°,FEC+EFC90°,CFEAEB,在CFE和BEA中,CFEBEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BECEx,即,当y时,代入方程式解得:x1(舍去),x2,BECE1,BC2,AB,矩形ABCD的面积为2×5;故选B【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键12、C【解析】直接根据特殊角的锐角三角函数值求解即可.【详解】故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1 或 0 或 【解析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值【详解】解:(1)当 m1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴交点坐标为( ,0);与 y 轴交点坐标(0,1)符合题意(2)当 m10 时,m1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是=44(m1)m0,解得,(m)2,解得 m 或 m 将(0,0)代入解析式得,m=0,符合题意(3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点,这时:=44(m1)m=0,解得:m= 故答案为1 或 0 或【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解14、90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.【详解】甲车先行40分钟(),所行路程为30千米,因此甲车的速度为(千米/时),设乙车的初始速度为V乙,则有,解得:(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t1小时,修好后走了t2小时,则有,解得:,45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.15、1【解析】据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可【详解】点A(a,3)与点B(4,b)关于原点对称,a=4,b=3,a+b=1,故选D【点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.16、6【解析】过A作AMCD于M,过A作ANBC于N,先根据“AAS”证明DAMBAN,再证明四边形AMCN为正方形,可求得AC=6,从而当BDAC时BD最小,且最小值为6.【详解】如下图,过A作AMCD于M,过A作ANBC于N,则MAN90°,DAMBAM90°,BAMBAN90°,DAMBAN.DMAN90°,ABAD,DAMBAN,AMAN,四边形AMCN为正方形,S四边形ABCDS四边形AMCNAC2,AC=6,BDAC时BD最小,且最小值为6.故答案为:6.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.17、3.61×2【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将361 000 000用科学记数法表示为3.61×2故答案为3.61×218、±8【解析】根据比例中项的定义即可求解.【详解】b是a,c的比例中项,若a=4,c=16,b2=ac=4×16=64,b=±8,故答案为±8【点睛】此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即ab=bc或,那么线段b叫做线段a、c的比例中项.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2) (3,-4) 或(5,4)或(-5,4)【解析】(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;(2)先画出存在的点,然后通过平移和计算确定坐标;【详解】解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)设抛物线的解析式为y=ax2+bx+c则有: 解得所以函数解析式为:(2)存在,(3,-4) 或(5,4)或(-5,4)理由如下:如图:P1相当于C点向右平移了5个单位长度,则坐标为(5,4);P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,则有A P3=BC, B P3=AC 即 (舍去)P3坐标为(3,-4)【点睛】本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.20、(1)10,30;(2)y=;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米【解析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0x2和x2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值综上即可得出结论【详解】(1)(300100)÷20=10(米/分钟),b=15÷1×2=30,故答案为10,30;(2)当0x2时,y=15x;当x2时,y=30+10×3(x2)=30x30,当y=30x30=300时,x=11,乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0x20)当10x+100(30x30)=50时,解得:x=4,当30x30(10x+100)=50时,解得:x=9,当300(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程21、解:(1)AF与圆O的相切理由为:如图,连接OC,PC为圆O切线,CPOCOCP=90°OFBC,AOF=B,COF=OCBOC=OB,OCB=BAOF=COF在AOF和COF中,OA=OC,AOF=COF,OF=OF,AOFCOF(SAS)OAF=OCF=90°AF为圆O的切线,即AF与O的位置关系是相切(2)AOFCOF,AOF=COFOA=OC,E为AC中点,即AE=CE=AC,OEACOAAF,在RtAOF中,OA=4,AF=3,根据勾股定理得:OF=1SAOF=OAAF=OFAE,AE=AC=2AE=【解析】试题分析:(1)连接OC,先证出3=2,由SAS证明OAFOCF,得对应角相等OAF=OCF,再根据切线的性质得出OCF=90°,证出OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE试题解析:(1)连接OC,如图所示:AB是O直径,BCA=90°,OFBC,AEO=90°,1=2,B=3,OFAC,OC=OA,B=1,3=2,在OAF和OCF中,OAFOCF(SAS),OAF=OCF,PC是O的切线,OCF=90°,OAF=90°,FAOA,AF是O的切线;(2)O的半径为4,AF=3,OAF=90°,OF=1FAOA,OFAC,AC=2AE,OAF的面积=AFOA=OFAE,3×4=1×AE,解得:AE=,AC=2AE=考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质22、 (1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督【解析】(1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;(2)根据众数的定义求解即可;(3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.【详解】(1)被调查的总人数为60÷30%=200人,C情况的人数为200(60+130)=10人,B情况人数所占比例为×100%=65%,补全图形如下:(2)由条形图知,B情况出现次数最多,所以众数为B,故答案为B(3)1500×5%=75,答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督【点睛】本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.23、(1)见解析;(2)见解析;【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得A=C,AB=CD,又由AE=CF,利用SAS,即可判定ABECDF(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得ADBC,AD=BC,又由AE=CF,即可证得DE=BF根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形【详解】证明:(1)四边形ABCD是平行四边形,A=C,AB=CD,在ABE和CDF中,AB=CD,A=C,AE=CF,ABECDF(SAS)(2)四边形ABCD是平行四边形,ADBC,AD=BCAE=CF,ADAE=BCCF,即DE=BF四边形BFDE是平行四边形24、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:,解得:x50,经检验,x50是原方程的解,且符合题意,x+21答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)设可购买m个乙种足球,则购买(50m)个甲种足球,根据题意得:50×(1+10%)(50m)+1×(110%)m2910,解得:m2答:这所学校最多可购买2个乙种足球【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系25、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元【解析】试题分析:(1)、设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元,解得 (2) 设第二次购买A种足球m个,则购买B种足球(50m)个,解得25m27m为整数 m25、26、27(3) 第二次购买足球时,A种足球单价为50454(元),B种足球单价为80×0.972当购买B种足球越多时,费用越高 此时25×5425×723150(元)26、20(1)y2x5, y=;(2)n4或n1【解析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案【详解】解:(1)点A的坐标为(4,3),OA=5,OA=OB,OB=5,点B在y轴的负半轴上,点B的坐标为(0,-5),将点A(4,3)代入反比例函数解析式y=中,反比例函数解析式为y=,将点A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,一次函数解析式为y=2x-5;(2)由(1)知k=2,则点N的坐标为(2,6),NP=NM,点M坐标为(2,0)或(2,12),分别代入y=2x-n可得:n=-4或n=1【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用27、x取0时,为1 或x取1时,为2【解析】试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可试题解析:解:原式= x1,x1-40,x-20,x1且x-1且x2,当x=0时,原式=1或当x=1时,原式=2

    注意事项

    本文(广东省深圳中学2022-2023学年中考三模数学试题含解析.doc)为本站会员(lil****205)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开