广东省佛山市顺德区市级名校2023届中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员年龄的平均数、众数、中位数分别为( )A13、15、14B14、15、14C13.5、15、14D15、15、152下列各组数中,互为相反数的是()A1与(1)2B(1)2与1C2与D2与|2|3如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃那么最省事的办法是带( )A带去B带去C带去D带去4下列计算中,正确的是( )ABCD5有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC6多项式4aa3分解因式的结果是()Aa(4a2) Ba(2a)(2+a) Ca(a2)(a+2) Da(2a)27如果零上2记作2,那么零下3记作( )A3B2C3D28下列式子一定成立的是()A2a+3a=6aBx8÷x2=x4CD(a2)3=9已知:如图,AD是ABC的角平分线,且AB:AC=3:2,则ABD与ACD的面积之比为()A3:2B9:4C2:3D4:910下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图中有5个棋子,图中有10个棋子,图中有16个棋子,则图_中有个棋子( )A31B35C40D50二、填空题(本大题共6个小题,每小题3分,共18分)11解不等式组,则该不等式组的最大整数解是_12如图,直线ykx与双曲线y(x0)交于点A(1,a),则k_13如图,在ABC中,点D、E分别在AB、AC上,且DEBC,已知AD2,DB4,DE1,则BC_14如图,ab,1=40°,2=80°,则3=度15若O所在平面内一点P到O的最大距离为6,最小距离为2,则O的半径为_16如图,在平面直角坐标系中,已知点A(4,0)、B(0,3),对AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、,则第(5)个三角形的直角顶点的坐标是_,第(2018)个三角形的直角顶点的坐标是_三、解答题(共8题,共72分)17(8分)解方程18(8分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,),反比例函数y=(x0)的图象经过点E,F(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若POA的面积等于EBF的面积,求点P的坐标19(8分)如图,ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t用含t的代数式表示:AP= ,AQ= 当以A,P,Q为顶点的三角形与ABC相似时,求运动时间是多少?20(8分)如图,已知O,请用尺规做O的内接正四边形ABCD,(保留作图痕迹,不写做法)21(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图请结合以上信息解答下列问题:m= ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动22(10分)如图,一次函数yax1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA,tanAOC(1)求a,k的值及点B的坐标;(2)观察图象,请直接写出不等式ax1的解集;(3)在y轴上存在一点P,使得PDC与ODC相似,请你求出P点的坐标23(12分)已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.求证:; 若, 求的长.24先化简,再求值:,其中.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据加权平均数、众数、中位数的计算方法求解即可.【详解】,15出现了8次,出现的次数最多,故众数是15,从小到大排列后,排在10、11两个位置的数是14,14,故中位数是14.故选B.【点睛】本题考查了平均数、众数与中位数的意义数据x1、x2、xn的加权平均数:(其中w1、w2、wn分别为x1、x2、xn的权数).一组数据中出现次数最多的数据叫做众数中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数2、A【解析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(1)21,1与1 互为相反数,正确;B、(1)21,故错误;C、2与互为倒数,故错误;D、2|2|,故错误;故选:A【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.3、A【解析】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.【详解】中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.4、D【解析】根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可【详解】A、(2a)3=8a3,故本选项错误;B、a3+a2不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选D【点睛】本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键5、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.6、B【解析】首先提取公因式a,再利用平方差公式分解因式得出答案【详解】4aa3=a(4a2)=a(2a)(2+a)故选:B【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键7、A【解析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】“正”和“负”相对,如果零上2记作2,那么零下3记作3.故选A.8、D【解析】根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.【详解】解:A:2a+3a=(2+3)a=5a,故A错误;B:x8÷x2=x8-2=x6,故B错误;C:=,故C错误;D:(-a-2)3=-a-6=-,故D正确.故选D.【点睛】本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.9、A【解析】试题解析:过点D作DEAB于E,DFAC于F.AD为BAC的平分线,DE=DF,又AB:AC=3:2, 故选A.点睛:角平分线上的点到角两边的距离相等.10、C【解析】根据题意得出第n个图形中棋子数为1+2+3+n+1+2n,据此可得【详解】解:图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况二、填空题(本大题共6个小题,每小题3分,共18分)11、x=1【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解【详解】,由不等式得x1,由不等式得x-1,其解集是-1x1,所以整数解为0,1,2,1,则该不等式组的最大整数解是x=1故答案为:x=1【点睛】考查不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了12、1【解析】解:直线y=kx与双曲线y=(x0)交于点A(1,a),a=1,k=1故答案为113、1【解析】先由DEBC,可证得ADEABC,进而可根据相似三角形得到的比例线段求得BC的长【详解】解:DEBC,ADEABC,DE:BCAD:AB,AD2,DB4,ABAD+BD6,1:BC2:6,BC1,故答案为:1【点睛】考查了相似三角形的性质和判定,关键是求出相似后得出比例式,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形14、120【解析】如图,ab,2=80°,4=2=80°(两直线平行,同位角相等)3=1+4=40°+80°=120°故答案为120°15、2或1【解析】点P可能在圆内也可能在圆外,因而分两种情况进行讨论.【详解】解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;当点在圆内时,则这个圆的半径是(6+2)÷2=1故答案为2或1.【点睛】此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.16、(16,) (8068,) 【解析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解】点A(4,0),B(0,3),OA=4,OB=3,AB=5,第(2)个三角形的直角顶点的坐标是(4,);5÷3=1余2,第(5)个三角形的直角顶点的坐标是(16,),2018÷3=672余2,第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,第(2018)个三角形的直角顶点的坐标是(8068,)故答案为:(16,);(8068,)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.三、解答题(共8题,共72分)17、原分式方程无解.【解析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.【详解】方程两边乘(x1)(x+2),得x(x+2)(x1)(x+2)3即:x2+2xx2x+23整理,得x1检验:当x1时,(x1)(x+2)0,原方程无解【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法18、(1);(2)点P坐标为(,)【解析】(1)将F(4,)代入,即可求出反比例函数的解析式;再根据求出E点坐标,将E、F两点坐标代入,即可求出一次函数解析式;(2)先求出EBF的面积,点P是线段EF上一点,可设点P坐标为,根据面积公式即可求出P点坐标.【详解】解:(1)反比例函数经过点,n=2,反比例函数解析式为的图象经过点E(1,m),m=2,点E坐标为(1,2)直线 过点,点,解得,一次函数解析式为;(2)点E坐标为(1,2),点F坐标为,点B坐标为(4,2),BE=3,BF=, 点P是线段EF上一点,可设点P坐标为,解得,点P坐标为【点睛】本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.19、(1)AP=2t,AQ=163t;(2)运动时间为秒或1秒【解析】(1)根据路程=速度时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论(1)当APQABC时;(2)当APQACB时利用相似三角形的性质求解即可【详解】(1)AP=2t,AQ=163t(2)PAQ=BAC,当时,APQABC,即,解得 当时,APQACB,即,解得t=1运动时间为秒或1秒【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.20、见解析【解析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.21、(1)150,(2)36°,(3)1【解析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可【详解】(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=1人,答:估计该校约有1名学生最喜爱足球活动故答案为150,36°,1【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键22、(1)a= ,k=3, B(-,-2) (2) x0或x3;(3) (0,)或(0,0)【解析】1)过A作AEx轴,交x轴于点E,在RtAOE中,根据tanAOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;(2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;(3)显然P与O重合时,满足PDC与ODC相似;当PCCD,即PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相 似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.【详解】解:(1)过A作AEx轴,交x轴于点E,在RtAOE中,OA=,tanAOC=,设AE=x,则OE=3x,根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=1(舍去),OE=3,AE=1,即A(3,1),将A坐标代入一次函数y=ax1中,得:1=3a1,即a=,将A坐标代入反比例解析式得:1=,即k=3,联立一次函数与反比例解析式得:,消去y得: x1=,解得:x=或x=3,将x=代入得:y=11=2,即B(,2);(2)由A(3,1),B(,2),根据图象得:不等式x1的解集为x0或x3;(3)显然P与O重合时,PDCODC;当PCCD,即PCD=90°时,PCO+DCO=90°,PCD=COD=90°,PCD=CDO,PDCCDO,PCO+CPO=90°,DCO=CPO,POC=COD=90°,PCOCDO,=,对于一次函数解析式y=x1,令x=0,得到y=1;令y=0,得到x=,C(,0),D(0,1),即OC=,OD=1,=,即OP=,此时P坐标为(0,),综上,满足题意P的坐标为(0,)或(0,0)【点睛】此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键23、(1)详见解析;(2)【解析】(1)根据题意平分可得,从而证明即可解答(2)由(1)可知,再根据四边形是平行四边形可得,过点作延长线于点,再根据勾股定理即可解答【详解】(1)证明:平分又又(2)四边形是平行四边形, 为等边三角形过点作延长线于点.在中,【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线24、-1,-9.【解析】先去括号,再合并同类项;最后把x=-2代入即可【详解】原式,当x=-2时,原式-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值