山西省运城重点达标名校2023届中考五模数学试题含解析.doc
-
资源ID:87994348
资源大小:675.50KB
全文页数:22页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山西省运城重点达标名校2023届中考五模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1把8a38a2+2a进行因式分解,结果正确的是( )A2a(4a24a+1)B8a2(a1)C2a(2a1)2D2a(2a+1)22在平面直角坐标系内,点P(a,a+3)的位置一定不在()A第一象限B第二象限C第三象限D第四象限3如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是( )ABCD4二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( ) ABCD5下列对一元二次方程x2+x3=0根的情况的判断,正确的是()A有两个不相等实数根B有两个相等实数根C有且只有一个实数根D没有实数根6下列4个点,不在反比例函数图象上的是( )A( 2,3)B(3,2)C(3,2)D( 3,2)7计算1+2+22+23+22010的结果是( )A220111B22011+1CD8下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )ABCD9如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交ABC的平分线于点P,则点P到边AB所在直线的距离为( )ABCD110下列运算正确的是()A3a+a=4aB3x22x=6x2C4a25a2=a2D(2x3)2÷2x2=2x4二、填空题(共7小题,每小题3分,满分21分)11如图,O的半径为2,AB为O的直径,P为AB延长线上一点,过点P作O的切线,切点为C若PC=2,则BC的长为_12如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、B在同一水平直线上,则A、B两点间的距离是_米(结果保留根号)13某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元则A型号的计算器的每只进价为_元14将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则1的度数为_ 15因式分解:_16不等式组的解是_.17不等式组的解集是_;三、解答题(共7小题,满分69分)18(10分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH(1)求证:AEHCGF;(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由19(5分)填空并解答:某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达该单位上午8:00上班,中午11:30下班(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4窗口开始工作记为0时刻a1a2a3a4a5a6c1c2c3c4到达窗口时刻000000161116服务开始时刻024681012141618每人服务时长2222222222服务结束时刻2468101214161820根据上述表格,则第 位,“新顾客”是第一个不需要排队的(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失分析:第n个“新顾客”到达窗口时刻为 ,第(n1)个“新顾客”服务结束的时刻为 20(8分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数小马虎根据竞赛成绩,绘制了如图所示的统计图经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛预赛分为A、B、C、D四组进行,选手由抽签确定张明、李刚两名同学恰好分在同一组的概率是多少?21(10分)如图,点C在线段AB上,ADEB,ACBE,ADBC,CF平分DCE求证:CFDE于点F22(10分)问题探究(1)如图,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使APD为等腰三角形,那么请画出满足条件的一个等腰三角形APD,并求出此时BP的长;(2)如图,在ABC中,ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使AMB大约为60°,就可以让监控装置的效果达到最佳,已知A=E=D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由23(12分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:(1)利用刻度尺在AOB的两边OA,OB上分别取OMON;(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;(3)画射线OP则射线OP为AOB的平分线请写出小林的画法的依据_24(14分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O有直角MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转MPN,旋转角为(0°90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G(1)求四边形OEBF的面积;(2)求证:OGBD=EF2;(3)在旋转过程中,当BEF与COF的面积之和最大时,求AE的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】首先提取公因式2a,进而利用完全平方公式分解因式即可【详解】解:8a38a2+2a=2a(4a24a+1)=2a(2a1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.2、D【解析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限, 故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.3、D【解析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可【详解】解:根据图象,设函数解析式为由图象可知,顶点为(1,3),将点(0,0)代入得解得故答案为:D【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式4、D【解析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解【详解】二次函数图象开口方向向上,a>0,对称轴为直线 b<0,二次函数图形与轴有两个交点,则>0,当x=1时y=a+b+c<0,的图象经过第二四象限,且与y轴的正半轴相交,反比例函数图象在第二、四象限,只有D选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.5、A【解析】【分析】根据方程的系数结合根的判别式,即可得出=130,进而即可得出方程x2+x3=0有两个不相等的实数根【详解】a=1,b=1,c=3,=b24ac=124×(1)×(3)=130,方程x2+x3=0有两个不相等的实数根,故选A【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根6、D【解析】分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于-6,就在函数图象上解答:解:原式可化为:xy=-6,A、2×(-3)=-6,符合条件;B、(-3)×2=-6,符合条件;C、3×(-2)=-6,符合条件;D、3×2=6,不符合条件故选D7、A【解析】可设其和为S,则2S=2+22+23+24+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+22010则2S=2+22+23+22010+22011-得S=22011-1故选A.【点睛】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键8、B【解析】根据轴对称图形的概念对各选项分析判断即可得出答案【详解】A不是轴对称图形,故本选项错误;B是轴对称图形,故本选项正确;C不是轴对称图形,故本选项错误;D不是轴对称图形,故本选项错误故选B9、D【解析】试题分析:ABC为等边三角形,BP平分ABC,PBC=ABC=30°,PCBC,PCB=90°,在RtPCB中,PC=BCtanPBC=1,点P到边AB所在直线的距离为1,故选D考点:1角平分线的性质;2等边三角形的性质;3含30度角的直角三角形;4勾股定理10、D【解析】根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【详解】A. 3a+a=2a,故不正确; B. 3x22x=6x3,故不正确;C. 4a25a2=-a2 ,故不正确; D. (2x3)2÷2x2=4x6÷2x2=2x4,故正确;故选D.【点睛】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、2【解析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得OPC=30°,则COP=60°,可得OCB是等边三角形,从而得结论【详解】连接OC,PC是O的切线,OCPC,OCP=90°,PC=2,OC=2,OP=4,OPC=30°,COP=60°,OC=OB=2,OCB是等边三角形,BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型12、100(1+)【解析】分析:如图,利用平行线的性质得A=60°,B=45°,在RtACD中利用正切定义可计算出AD=100,在RtBCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可详解:如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,A=60°,B=45°,在RtACD中,tanA=,AD=100,在RtBCD中,BD=CD=100,AB=AD+BD=100+100=100(1+)答:A、B两点间的距离为100(1+)米故答案为100(1+)点睛:本题考查了解直角三角形的应用仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形13、40【解析】设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据“若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元”,即可得出关于x、y的二元一次方程组,解之即可得出结论【详解】设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据题意得:,解得:答:A型号的计算器的每只进价为40元【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键14、75°【解析】先根据同旁内角互补,两直线平行得出ACDF,再根据两直线平行内错角相等得出2=A=45°,然后根据三角形内角与外角的关系可得1的度数【详解】ACB=DFE=90°,ACB+DFE=180°,ACDF,2=A=45°,1=2+D=45°+30°=75°故答案为:75°【点睛】本题考查了平行线的判定与性质,三角形外角的性质,求出2=A=45°是解题的关键15、x3(y+1)(y-1)【解析】先提取公因式x3,再利用平方差公式分解可得【详解】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案为x3(y+1)(y-1)【点睛】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤-先提取公因式,再利用公式法分解16、【解析】分别求出各不等式的解集,再求出其公共解集即可【详解】 解不等式,得x1,解不等式,得x1,所以不等式组的解集是1x1,故答案是:1x1【点睛】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)17、9x1【解析】分别求出两个不等式的解集,再求其公共解集【详解】,解不等式,得:x-1,解不等式,得:x-9,所以不等式组的解集为:-9x-1,故答案为:-9x-1【点睛】本题考查一元一次不等式组的解法,属于基础题求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了三、解答题(共7小题,满分69分)18、(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.【解析】分析:(1)由正方形的性质得出A=C=90°,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证明AEHCGF即可求解;(2)连接AC、EG,交点为O;先证明AOECOG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心详解:(1)证明:四边形ABCD是正方形,A=C=90°,AB=BC=CD=DA,AE=BF=CG=DH,AH=CF,在AEH与CGF中,AH=CF,A=C,AE=CG,AEHCGF(SAS);(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:四边形ABCD是正方形,ABCD,OAE=OCG,在AOE和COG中,OAE=OCG,AOE=COG,AE=CG,AOECOG(AAS),OA=OC,OE=OG,即O为AC的中点,正方形的对角线互相平分,O为对角线AC、BD的交点,即O为正方形的中心点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果19、(1)5;(2)5n4,na+6a【解析】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,则第n个“新顾客”到达窗口时刻为5n4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,第n1个“新顾客”服务开始的时间为(6+n1)a=(5+n)a,第n1个“新顾客”服务结束的时间为(5+n)a+a=na+6a【详解】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;故答案为:5;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,第n个“新顾客”到达窗口时刻为5n4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,第n个“新顾客”服务开始的时间为(6+n)a,第n1个“新顾客”服务开始的时间为(6+n1)a=(5+n)a,每a分钟办理一个客户,第n1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,故答案为:5n4,na+6a【点睛】本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式20、(1)见解析;(2)140人;(1). 【解析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率【详解】(1)由统计图可得:(1分)(2分)(4分)(5分)甲(人)01764乙(人)22584全体(%)512.5101517.5乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%40,故乙组得5分的人数统计有误,正确人数应为:40×17.5%4=1(2)800×(5%+12.5%)=140(人);(1)如图得:共有16种等可能的结果,所选两人正好分在一组的有4种情况,所选两人正好分在一组的概率是:【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件21、证明见解析【解析】根据平行线性质得出A=B,根据SAS证ACDBEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可【详解】ADBE,AB在ACD和BEC中,ACDBEC(SAS),DCCE CF平分DCE,CFDE(三线合一)【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力22、(1)1;2-;(1)4+;(4)(200-25-40)米【解析】(1)由于PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题(1)以EF为直径作O,易证O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长(4)要满足AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长【详解】(1)作AD的垂直平分线交BC于点P,如图,则PA=PDPAD是等腰三角形四边形ABCD是矩形,AB=DC,B=C=90°PA=PD,AB=DC,RtABPRtDCP(HL)BP=CPBC=2,BP=CP=1以点D为圆心,AD为半径画弧,交BC于点P,如图,则DA=DPPAD是等腰三角形四边形ABCD是矩形,AD=BC,AB=DC,C=90°AB=4,BC=2,DC=4,DP=2CP=BP=2-点A为圆心,AD为半径画弧,交BC于点P,如图,则AD=APPAD是等腰三角形同理可得:BP=综上所述:在等腰三角形ADP中,若PA=PD,则BP=1;若DP=DA,则BP=2-;若AP=AD,则BP=(1)E、F分别为边AB、AC的中点,EFBC,EF=BCBC=11,EF=4以EF为直径作O,过点O作OQBC,垂足为Q,连接EQ、FQ,如图ADBC,AD=4,EF与BC之间的距离为4OQ=4OQ=OE=4O与BC相切,切点为QEF为O的直径, EQF=90°过点E作EGBC,垂足为G,如图EGBC,OQBC,EGOQEOGQ,EGOQ,EGQ=90°,OE=OQ,四边形OEGQ是正方形GQ=EO=4,EG=OQ=4B=40°,EGB=90°,EG=4,BG=BQ=GQ+BG=4+当EQF=90°时,BQ的长为4+(4)在线段CD上存在点M,使AMB=40°理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GPAB,垂足为P,作AKBG,垂足为K设GP与AK交于点O,以点O为圆心,OA为半径作O,过点O作OHCD,垂足为H,如图则O是ABG的外接圆,ABG是等边三角形,GPAB,AP=PB=AB AB=170,AP=145ED=185,OH=185-145=6ABG是等边三角形,AKBG,BAK=GAK=40°OP=APtan40°=145×=25OA=1OP=90OHOAO与CD相交,设交点为M,连接MA、MB,如图AMB=AGB=40°,OM=OA=90OHCD,OH=6,OM=90,HM=40AE=200,OP=25,DH=200-25若点M在点H的左边,则DM=DH+HM=200-25+40200-25+40420,DMCD点M不在线段CD上,应舍去若点M在点H的右边,则DM=DH-HM=200-25-40200-25-40420,DMCD点M在线段CD上综上所述:在线段CD上存在唯一的点M,使AMB=40°,此时DM的长为(200-25-40)米【点睛】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强而构造等边三角形及其外接圆是解决本题的关键23、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【解析】利用“HL”判断RtOPMRtOPN,从而得到POM=PON【详解】有画法得OMON,OMPONP90°,则可判定RtOPMRtOPN,所以POMPON,即射线OP为AOB的平分线故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线【点睛】本题考查了作图基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.24、(1);(2)详见解析;(3)AE=【解析】(1)由四边形ABCD是正方形,直角MPN,易证得BOECOF(ASA),则可证得S四边形OEBF=SBOC=S正方形ABCD;(2)易证得OEGOBE,然后由相似三角形的对应边成比例,证得OGOB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;(3)首先设AE=x,则BE=CF=1x,BF=x,继而表示出BEF与COF的面积之和,然后利用二次函数的最值问题,求得AE的长【详解】(1)四边形ABCD是正方形,OB=OC,OBE=OCF=45°,BOC=90°,BOF+COF=90°,EOF=90°,BOF+COE=90°,BOE=COF,在BOE和COF中, BOECOF(ASA),S四边形OEBF=SBOE+SBOE=SBOE+SCOF=SBOC=S正方形ABCD (2)证明:EOG=BOE,OEG=OBE=45°,OEGOBE,OE:OB=OG:OE,OGOB=OE2, OGBD=EF2;(3)如图,过点O作OHBC,BC=1, 设AE=x,则BE=CF=1x,BF=x,SBEF+SCOF=BEBF+CFOH 当时,SBEF+SCOF最大;即在旋转过程中,当BEF与COF的面积之和最大时, 【点睛】本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题注意掌握转化思想的应用是解此题的关键