广东省汕头市潮南区司马浦镇重点中学2022-2023学年中考数学最后一模试卷含解析.doc
-
资源ID:87994353
资源大小:1.10MB
全文页数:23页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省汕头市潮南区司马浦镇重点中学2022-2023学年中考数学最后一模试卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )ABCD24的平方根是( )A4B±4C±2D23用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.AB与CBC与DCE与FDA与B4第四届济南国际旅游节期间,全市共接待游客686000人次将686000用科学记数法表示为()A686×104 B68.6×105 C6.86×106 D6.86×1055如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分BAD,分别交BC、BD于点E、P,连接OE,ADC=60°,AB=BC=1,则下列结论:CAD=30°BD=S平行四边形ABCD=ABACOE=ADSAPO=,正确的个数是()A2B3C4D56如图,已知点E在正方形ABCD内,满足AEB=90°,AE=6,BE=8,则阴影部分的面积是()A48B60C76D807已知二次函数y=ax2+bx+c(a1)的图象如图所示,则下列结论:a、b同号;当x=1和x=3时,函数值相等;4a+b=1;当y=2时,x的值只能取1;当1x5时,y1其中,正确的有()A2个B3个C4个D5个8如图,在O中,O为圆心,点A,B,C在圆上,若OA=AB,则ACB=()A15°B30°C45°D60°9计算的正确结果是()AB-C1D110估计介于( )A0与1之间B1与2之间C2与3之间D3与4之间二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是_12如图,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则BDC的度数为_度13如图,点E在正方形ABCD的外部,DCE=DEC,连接AE交CD于点F,CDE的平分线交EF于点G,AE=2DG若BC=8,则AF=_14同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_15如图,直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,那么当y1y2时,x的取值范围是_16计算:a6÷a3=_三、解答题(共8题,共72分)17(8分)如图,已知抛物线yax2+bx+1经过A(1,0),B(1,1)两点(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:yk1x+b1(k1,b1为常数,且k10),直线l2:yk2x+b2(k2,b2为常数,且k20),若l1l2,则k1k21解决问题:若直线y2x1与直线ymx+2互相垂直,则m的值是_;抛物线上是否存在点P,使得PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值18(8分)如图,AB为O的直径,点E在O,C为弧BE的中点,过点C作直线CDAE于D,连接AC、BC试判断直线CD与O的位置关系,并说明理由若AD=2,AC=,求O的半径19(8分)如图,在菱形ABCD中,点E在对角线BD上. 将线段CE绕点C顺时针旋转,得到CF,连接DF. (1)求证:BE=DF;(2)连接AC, 若EB=EC ,求证:. 20(8分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:节目代号ABCDE节目类型新闻体育动画娱乐戏曲喜爱人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生的总数为 人,统计表中m的值为 扇形统计图中n的值为 ;(2)被调查学生中,最喜爱电视节目的“众数” ;(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.21(8分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”(1)概念理解:如图1,在ABC中,AC6,BC3,ACB30°,试判断ABC是否是”等高底”三角形,请说明理由(1)问题探究:如图1,ABC是“等高底”三角形,BC是”等底”,作ABC关于BC所在直线的对称图形得到A'BC,连结AA交直线BC于点D若点B是AAC的重心,求的值(3)应用拓展:如图3,已知l1l1,l1与l1之间的距离为1“等高底”ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍将ABC绕点C按顺时针方向旋转45°得到A'B'C,AC所在直线交l1于点D求CD的值22(10分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条超市约定:随机发放,早餐一人一份,一份两样,一样一个(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率23(12分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率24如图,四边形AOBC是正方形,点C的坐标是(4,0)正方形AOBC的边长为 ,点A的坐标是 将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A,B,C,求点A的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当OPQ为等腰三角形时,求出t的值(直接写出结果即可)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比2、C【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题【详解】(±1)1=4,4的平方根是±1故选D【点睛】本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根3、A【解析】试题分析:在计算器上依次按键转化为算式为=-1.414;计算可得结果介于2与1之间故选A考点:1、计算器数的开方;2、实数与数轴4、D【解析】根据科学记数法的表示形式(a×10n,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数)可得:686000=6.86×105,故选:D5、D【解析】先根据角平分线和平行得:BAE=BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:ABE是等边三角形,由外角的性质和等腰三角形的性质得:ACE=30°,最后由平行线的性质可作判断;先根据三角形中位线定理得:OE=AB=,OEAB,根据勾股定理计算OC=和OD的长,可得BD的长;因为BAC=90°,根据平行四边形的面积公式可作判断;根据三角形中位线定理可作判断;根据同高三角形面积的比等于对应底边的比可得:SAOE=SEOC=OEOC=,代入可得结论【详解】AE平分BAD,BAE=DAE,四边形ABCD是平行四边形,ADBC,ABC=ADC=60°,DAE=BEA,BAE=BEA,AB=BE=1,ABE是等边三角形,AE=BE=1,BC=2,EC=1,AE=EC,EAC=ACE,AEB=EAC+ACE=60°,ACE=30°,ADBC,CAD=ACE=30°,故正确;BE=EC,OA=OC,OE=AB=,OEAB,EOC=BAC=60°+30°=90°,RtEOC中,OC=,四边形ABCD是平行四边形,BCD=BAD=120°,ACB=30°,ACD=90°,RtOCD中,OD=,BD=2OD=,故正确;由知:BAC=90°,SABCD=ABAC,故正确;由知:OE是ABC的中位线,又AB=BC,BC=AD,OE=AB=AD,故正确;四边形ABCD是平行四边形,OA=OC=,SAOE=SEOC=OEOC=××,OEAB,SAOP= SAOE=,故正确;本题正确的有:,5个,故选D【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系6、C【解析】试题解析:AEB=90°,AE=6,BE=8,AB=S阴影部分=S正方形ABCD-SRtABE=102-=100-24=76.故选C.考点:勾股定理.7、A【解析】根据二次函数的性质和图象可以判断题目中各个小题是否成立【详解】由函数图象可得,a1,b1,即a、b异号,故错误,x=-1和x=5时,函数值相等,故错误,-2,得4a+b=1,故正确,由图象可得,当y=-2时,x=1或x=4,故错误,由图象可得,当-1x5时,y1,故正确,故选A【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答8、B【解析】根据题意得到AOB是等边三角形,求出AOB的度数,根据圆周角定理计算即可【详解】解:OA=AB,OA=OB,AOB是等边三角形,AOB=60°,ACB=30°,故选B【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键9、D【解析】根据有理数加法的运算方法,求出算式的正确结果是多少即可【详解】原式 故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:同号相加,取相同符号,并把绝对值相加绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1一个数同1相加,仍得这个数10、C【解析】解:,即估计在23之间故选C【点睛】本题考查估计无理数的大小二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】解:连接AG,由旋转变换的性质可知,ABG=CBE,BA=BG=5,BC=BE,由勾股定理得,CG=4,DG=DCCG=1,则AG=, ,ABG=CBE,ABGCBE,解得,CE=,故答案为【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键12、1【解析】根据EBD由ABC旋转而成,得到ABCEBD,则BCBD,EBDABC30°,则有BDCBCD,DBC18030°10°,化简计算即可得出.【详解】解:EBD由ABC旋转而成,ABCEBD,BCBD,EBDABC30°,BDCBCD,DBC18030°10°,;故答案为:1【点睛】此题考查旋转的性质,即图形旋转后与原图形全等13、【解析】如图作DHAE于H,连接CG设DG=x,DCE=DEC,DC=DE,四边形ABCD是正方形,AD=DC,ADF=90°,DA=DE,DHAE,AH=HE=DG,在GDC与GDE中,GDCGDE(SAS),GC=GE,DEG=DCG=DAF,AFD=CFG,ADF=CGF=90°,2GDE+2DEG=90°,GDE+DEG=45°,DGH=45°,在RtADH中,AD=8,AH=x,DH=x,82=x2+(x)2,解得:x=,ADHAFD,,AF=4故答案为414、50°【解析】【分析】直接利用圆周角定理进行求解即可【详解】弧AB所对的圆心角是100°,弧AB所对的圆周角为50°,故答案为:50°【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半15、1x2【解析】根据图象得出取值范围即可【详解】解:因为直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,所以当y1y2时,1x2,故答案为1x2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围16、a1【解析】根据同底数幂相除,底数不变指数相减计算即可【详解】a6÷a1=a61=a1故答案是a1【点睛】同底数幂的除法运算性质三、解答题(共8题,共72分)17、(1)yx2+x+1;(2)-;点P的坐标(6,14)(4,5);(3).【解析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A,B点坐标代入,得,解得,抛物线的解析式为y;(2)由直线y2x1与直线ymx+2互相垂直,得2m1,即m;故答案为;AB的解析式为当PAAB时,PA的解析式为y2x2,联立PA与抛物线,得,解得(舍),即P(6,14);当PBAB时,PB的解析式为y2x+3,联立PB与抛物线,得,解得(舍),即P(4,5),综上所述:PAB是以AB为直角边的直角三角形,点P的坐标(6,14)(4,5);(3)如图:,M(t,t2+t+1),Q(t, t+),MQt2+SMABMQ|xBxA|(t2+)×2t2+,当t0时,S取最大值,即M(0,1)由勾股定理,得AB,设M到AB的距离为h,由三角形的面积,得h点M到直线AB的距离的最大值是【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键18、(1)直线CD与O相切;(2)O的半径为1.1【解析】(1)相切,连接OC,C为的中点,1=2,OA=OC,1=ACO,2=ACO,ADOC,CDAD,OCCD,直线CD与O相切;(2)连接CE,AD=2,AC=,ADC=90°,CD=,CD是O的切线,=ADDE,DE=1,CE=,C为的中点,BC=CE=,AB为O的直径,ACB=90°,AB=2半径为1.119、证明见解析【解析】【分析】(1)根据菱形的性质可得BC=DC,再根据,从而可得 ,继而得=,由旋转的性质可得=,证明,即可证得=;(2)根据菱形的对角线的性质可得,从而得,由,可得,由(1)可知,可推得,即可得,问题得证.【详解】(1)四边形ABCD是菱形, ,线段由线段绕点顺时针旋转得到, ,在和中,;(2)四边形ABCD是菱形,由(1)可知, ,.【点睛】本题考查了旋转的性质、菱形的性质、全等三角形的判定与性质等,熟练掌握和应用相关的性质与定理是解题的关键.20、(1)150;45,36, (2)娱乐 (3)1【解析】(1)由“体育”的人数及其所占百分比可得总人数,用总人数减去其它节目的人数即可得求得动画的人数m,用娱乐的人数除以总人数即可得n的值;(2)根据众数的定义求解可得;(3)用总人数乘以样本中喜爱新闻节目的人数所占比例【详解】解:(1)被调查的学生总数为30÷20%150(人),m150(1230549)45,n%×100%36%,即n36,故答案为150,45,36;(2)由题意知,最喜爱电视节目为“娱乐”的人数最多,被调查学生中,最喜爱电视节目的“众数”为娱乐,故答案为娱乐;(3)估计该校最喜爱新闻节目的学生人数为2000×1【点睛】本题考查了统计表、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型21、(1)ABC是“等高底”三角形;(1);(3)CD的值为,1,1 【解析】(1)过A作ADBC于D,则ADC是直角三角形,ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.(1)点B是的重心,得到设 则 根据勾股定理可得即可求出它们的比值.(3)分两种情况进行讨论:当时和当时.【详解】(1)ABC是“等高底”三角形;理由:如图1,过A作ADBC于D,则ADC是直角三角形,ADC=90°,ACB=30°,AC=6, AD=BC=3,即ABC是“等高底”三角形;(1)如图1,ABC是“等高底”三角形,BC是“等底”, ABC关于BC所在直线的对称图形是 ,ADC=90°,点B是的重心, 设 则 由勾股定理得 (3)当时,如图3,作AEBC于E,DFAC于F,“等高底”ABC的“等底”为BC,l1l1,l1与l1之间的距离为1,. BE=1,即EC=4, ABC绕点C按顺时针方向旋转45°得到A'B'C,DCF=45°,设 l1l1, 即 如图4,此时ABC等腰直角三角形,ABC绕点C按顺时针方向旋转45°得到,是等腰直角三角形, 当时,如图5,此时ABC是等腰直角三角形,ABC绕点C按顺时针方向旋转45°得到A'B'C, 如图6,作于E,则 ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,l1,即直线与l1无交点,综上所述,CD的值为【点睛】属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.22、(1)不可能;(2).【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率23、(1)详见解析;(2)72°;(3)【解析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得【详解】解:(1) 抽 查的总人数为:(人) 类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、,画树状图得:恰好抽到一男一女的情况共有12 种,分别是 (恰好抽到一男一女)【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、(1)4,;(2)旋转后的正方形与原正方形的重叠部分的面积为;(3).【解析】(1)连接AB,根据OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;(2)根据旋转的性质可得OA的长,从而得出AC,AE,再求出面积即可;(3)根据P、Q点在不同的线段上运动情况,可分为三种列式当点P、Q分别在OA、OB时,当点P在OA上,点Q在BC上时,当点P、Q在AC上时,可方程得出t【详解】解:(1)连接AB,与OC交于点D,四边形是正方形,OCA为等腰Rt,AD=OD=OC=2,点A的坐标为.4,.(2)如图 四边形是正方形, ,. 将正方形绕点顺时针旋转, 点落在轴上. 点的坐标为.,. 四边形,是正方形,.,., .旋转后的正方形与原正方形的重叠部分的面积为.(3)设t秒后两点相遇,3t=16,t=当点P、Q分别在OA、OB时,,OP=t,OQ=2t不能为等腰三角形当点P在OA上,点Q在BC上时如图2,当OQ=QP,QM为OP的垂直平分线,OP=2OM=2BQ,OP=t,BQ=2t-4,t=2(2t-4),解得:t=当点P、Q在AC上时,不能为等腰三角形综上所述,当时是等腰三角形【点睛】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大