广东省云浮达标名校2023年中考数学考前最后一卷含解析.doc
-
资源ID:87994433
资源大小:1.10MB
全文页数:25页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省云浮达标名校2023年中考数学考前最后一卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )ABCD22017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌综合实力稳步提升全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A280×103B28×104C2.8×105D0.28×1063如图图形中,既是中心对称图形又是轴对称图形的是()ABCD4在下列四个标志中,既是中心对称又是轴对称图形的是()ABCD5如图所示是放置在正方形网格中的一个 ,则的值为( )ABCD6今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )A小明中途休息用了20分钟B小明休息前爬山的平均速度为每分钟70米C小明在上述过程中所走的路程为6600米D小明休息前爬山的平均速度大于休息后爬山的平均速度7下列说法正确的是( )A2a2b与2b2a的和为0B的系数是,次数是4次C2x2y3y21是3次3项式Dx2y3与 是同类项8如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E若FG2,则AE的长度为( )A6B8C10D129如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )ABCD10如图,若ab,1=60°,则2的度数为()A40°B60°C120°D150°11“射击运动员射击一次,命中靶心”这个事件是( )A确定事件 B必然事件 C不可能事件 D不确定事件12如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_14长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为_15瑞士的一位中学教师巴尔末从光谱数据,中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门请你根据这个规律写出第9个数_16如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,则折痕EF的长为_17化简:+3=_18如图,已知 OP 平分AOB,AOB=60°,CP=2,CPOA,PDOA于点D,PEOB于点E如果点M是OP的中点,则DM的长是_ 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率20(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名)1323241每人月工资(元)2100084002025220018001600950请你根据上述内容,解答下列问题:该公司“高级技工”有 名;所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;小张到这家公司应聘普通工作人员请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平21(6分)如图,求证:。22(8分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价进价)23(8分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图若AD2,试求出线段CP的最大值24(10分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图利用图中所提供的信息解决以下问题:小明一共统计了 个评价;请将图1补充完整;图2中“差评”所占的百分比是 ;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率25(10分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图(1)根据图中所给信息填写下表: 投中个数统计 平均数 中位数 众数 A 8 B7 7(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明26(12分)在ABC中,AB=ACBC,点D和点A在直线BC的同侧,BD=BC,BAC=,DBC=,且+=110°,连接AD,求ADB的度数(不必解答)小聪先从特殊问题开始研究,当=90°,=30°时,利用轴对称知识,以AB为对称轴构造ABD的轴对称图形ABD,连接CD(如图1),然后利用=90°,=30°以及等边三角形等相关知识便可解决这个问题请结合小聪研究问题的过程和思路,在这种特殊情况下填空:DBC的形状是 三角形;ADB的度数为 在原问题中,当DBCABC(如图1)时,请计算ADB的度数;在原问题中,过点A作直线AEBD,交直线BD于E,其他条件不变若BC=7,AD=1请直接写出线段BE的长为 27(12分)如图,抛物线yx2+bx+c与x轴交于点A(1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选A【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置掌握定义是关键此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键2、C【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将280000用科学记数法表示为2.8×1故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、A【解析】A. 是轴对称图形,是中心对称图形,故本选项正确;B. 是中心对称图,不是轴对称图形,故本选项错误;C. 不是中心对称图,是轴对称图形,故本选项错误;D. 不是轴对称图形,是中心对称图形,故本选项错误。故选A.4、C【解析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、D【解析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案【详解】解:过点A向CB引垂线,与CB交于D,ABD是直角三角形, BD=4,AD=2,tanABC= 故选:D【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做A的正切,记作tanA6、C【解析】根据图像,结合行程问题的数量关系逐项分析可得出答案.【详解】从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;小明休息前爬山的平均速度为:(米/分),B正确;小明在上述过程中所走的路程为3800米,C错误;小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确故选C考点:函数的图象、行程问题7、C【解析】根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得【详解】A、2a2b与-2b2a不是同类项,不能合并,此选项错误;B、a2b的系数是,次数是3次,此选项错误;C、2x2y-3y2-1是3次3项式,此选项正确;D、x2y3与相同字母的次数不同,不是同类项,此选项错误;故选C【点睛】本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义8、D【解析】根据正方形的性质可得出ABCD,进而可得出ABFGDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由ADBC,DG=CG,可得出AG=GE,即可求出AE=2AG=1【详解】解:四边形ABCD为正方形,AB=CD,ABCD, ABF=GDF,BAF=DGF,ABFGDF,=2,AF=2GF=4,AG=2ADBC,DG=CG,=1,AG=GEAE=2AG=1故选:D【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键9、C【解析】如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题【详解】解:如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,AB=10,AC=8,BC=6,AB2=AC2+BC2,C=10°,OP1B=10°,OP1ACAO=OB,P1C=P1B,OP1=AC=4,P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,PQ长的最大值与最小值的和是1故选:C【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型10、C【解析】如图:1=60°,3=1=60°,又ab,2+3=180°,2=120°,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.11、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D考点:随机事件12、A【解析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象【详解】解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,抛物线向上平移5个单位后可得:,即,形成的图象是A选项故选A【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答二、填空题:(本大题共6个小题,每小题4分,共24分)13、25【解析】试题解析:由题意 14、1【解析】由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【详解】长、宽分别为a、b的矩形,它的周长为14,面积为10,a+b=7,ab=10,a2b+ab2=ab(a+b)=10×7=1,故答案为:1【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键15、【解析】分子的规律依次是:32,42,52,62,72,82,92,分母的规律是:规律是:5+7=12 12+9=21 21+11=32 32+13=45,即分子为(n+2)2,分母为n(n+4)【详解】解:由题可知规律,第9个数的分子是(9+2)2=121;第五个的分母是:32+13=45;第六个的分母是:45+15=60;第七个的分母是:60+17=77;第八个的分母是:77+19=96;则第九个的分母是:96+21=1因而第九个数是:故答案为:【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律16、【解析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,四边形ABCD是矩形,设,则,在中,即,由折叠的性质可得:,故答案为【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用17、【解析】试题分析:先进行二次根式的化简,然后合并,可得原式=2+=318、【解析】由 OP平分AOB,AOB=60°,CP=2,CPOA,易得OCP是等腰三角形,COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半, 即可求得DM的长【详解】OP 平分AOB,AOB=60°,AOP=COP=30°,CPOA,AOP=CPO,COP=CPO,OC=CP=2,PCE=AOB=60°,PEOB,CPE=30°, PDOA,点M是OP的中点, 故答案为:【点睛】此题考查了等腰三角形的性质与判定、含 30°直角三角形的性质以及直角三角形斜边的中线的性质此题难度适中,属于中考常见题型,求出 OP 的长是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2).【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解【详解】(1)正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比20、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些(4)能反映该公司员工的月工资实际水平【解析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=501323241=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平用1700元或1600元来介绍更合理些(4)(元)能反映该公司员工的月工资实际水平21、见解析【解析】据1=2可得BAC=EAD,再加上条件AB=AE,C=D可证明ABCAED【详解】证明:1=2,1+EAC=2+EAC,即BAC=EAD在ABC和AED中,ABCAED(AAS)【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角22、(1)第一批T恤衫每件的进价是90元;(2)剩余的T恤衫每件售价至少要80元.【解析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T恤衫每件售价y元,由利润=售价进价,根据第二批的销售利润不低于650元,可列不等式求解.【详解】解:(1)设第一批T恤衫每件进价是x元,由题意,得,解得x=90经检验x=90是分式方程的解,符合题意.答:第一批T恤衫每件的进价是90元.(2)设剩余的T恤衫每件售价y元由(1)知,第二批购进=50件由题意,得120×50×+y×50×4950650,解得y80.答:剩余的T恤衫每件售价至少要80元.23、(1)AE=DF,AEDF,理由见解析;(2)成立,CE:CD=或2;(3) 【解析】试题分析:(1)根据正方形的性质,由SAS先证得ADEDCF由全等三角形的性质得AE=DF,DAE=CDF,再由等角的余角相等可得AEDF;(2)有两种情况:当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可试题解析:(1)AE=DF,AEDF, 理由是:四边形ABCD是正方形,AD=DC,ADE=DCF=90°,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,DE=CF,在ADE和DCF中,AE=DF,DAE=FDC, ADE=90°,ADP+CDF=90°,ADP+DAE=90°,APD=180°-90°=90°,AEDF; (2)(1)中的结论还成立, 有两种情况:如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,则; 如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:,四边形ABCD是正方形,ADC=90°,即ADCE,DE=CD=a,CE:CD=2a:a=2; 即CE:CD=或2; (3)点P在运动中保持APD=90°,点P的路径是以AD为直径的圆,如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,在RtQDC中, 即线段CP的最大值是. 点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.24、(1)150;作图见解析;13.3%;(2)【解析】(1)用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;根据“差评”的人数÷总人数×100%即可得“差评”所占的百分比;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,根据概率公式即可计算出两人中至少有一个给“好评”的概率【详解】小明统计的评价一共有:(40+20)÷(1-60%=150(个);“好评”一共有150×60%=90(个),补全条形图如图1:图2中“差评”所占的百分比是:×100%=13.3%;(2)列表如下:好中差好好,好好,中好,差中中,好中,中中,差差差,好差,中差,差由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,两人中至少有一个给“好评”的概率是考点:扇形统计图;条形统计图;列表法与树状图法25、(1)7,9,7;(2)应该选派B;【解析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案【详解】(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;B成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)= (79)2+(710)2+(74)2+(73)2+(79)2+(77)2=7;= (77)2+(77)2+(78)2+(77)2+(76)2+(77)2= ;从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B【点睛】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好26、(1)DBC是等边三角形,ADB=30°(1)ADB=30°;(3)7+或7【解析】(1)如图1中,作ABDABD,BDBD,连接CD,AD,由ABDABD,推出DBC是等边三角形;借助的结论,再判断出ADBADC,得ADBADC,由此即可解决问题(1)当60°110°时,如图3中,作AB DABD,B DBD,连接CD,AD,证明方法类似(1)(3)第种情况:当60°110°时,如图3中,作AB DABD,B DBD,连接CD,AD,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第种情况:当0°60°时,如图4中,作ABDABD,BDBD,连接CD,AD证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论【详解】(1)如图1中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,BAC=90°,ABC=45°,DBC=30°,ABD=ABCDBC=15°,在ABD和ABD中,ABDABD,ABD=ABD=15°,ADB=ADB,DBC=ABD+ABC=60°,BD=BD,BD=BC,BD=BC,DBC是等边三角形,DBC是等边三角形,DB=DC,BDC=60°,在ADB和ADC中,ADBADC,ADB=ADC,ADB=BDC=30°,ADB=30°(1)DBCABC,60°110°,如图3中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,ABC=ACB,BAC=,ABC=(180°)=90°,ABD=ABCDBC=90°,同(1)可证ABDABD,ABD=ABD=90°,BD=BD,ADB=ADBDBC=ABD+ABC=90°+90°=180°(+),+=110°,DBC=60°,由(1)可知,ADBADC,ADB=ADC,ADB=BDC=30°,ADB=30°(3)第情况:当60°110°时,如图31,由(1)知,ADB=30°,作AEBD,在RtADE中,ADB=30°,AD=1,DE=,BCD'是等边三角形,BD'=BC=7,BD=BD'=7,BE=BDDE=7;第情况:当0°60°时,如图4中,作ABD=ABD,BD=BD,连接CD,AD同理可得:ABC=(180°)=90°,ABD=DBCABC=(90°),同(1)可证ABDABD,ABD=ABD=(90°),BD=BD,ADB=ADB,DBC=ABCABD=90°(90°)=180°(+),DB=DC,BDC=60°同(1)可证ADBADC,ADB=ADC,ADB+ADC+BDC=360°,ADB=ADB=150°,在RtADE中,ADE=30°,AD=1,DE=,BE=BD+DE=7+,故答案为:7+或7【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型27、 (1) ;(2) 当m2时,四边形CQMD为平行四边形;(3) Q1(8,18)、Q2(1,0)、Q3(3,2)【解析】(1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:yx+2,设点M(m,m+2),Q(m,m2m2),可得MQ=m2+m+4,根据平行四边形的性质可得QM=CD=4,即m2+m+44可解得m=2;(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,当BDQ=90°时,则BD2+DQ2=BQ2,列出方程可以求出Q1(8,18),Q2(-1,0),当DBQ=90°时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2)【详解】(1)由题意知,点A(1,0),B(4,0)在抛物线yx2+bx+c上,解得:所求抛物线的解析式为 (2)由(1)知抛物线的解析式为,令x0,得y2点C的坐标为C(0,2)点D与点C关于x轴对称点D的坐标为D(0,2)设直线BD的解析式为:ykx+2且B(4,0)04k+2,解得:直线BD的解析式为:点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q可设点M,Q MQ四边形CQMD是平行四边形QMCD4,即=4解得:m12,m20(舍去)当m2时,四边形CQMD为平行四边形(3)由题意,可设点Q且B(4,0)、D(0,2)BQ2 DQ2 BD220当BDQ90°时,则BD2+DQ2BQ2, 解得:m18,m21,此时Q1(8,18),Q2(1,0)当DBQ90°时,则BD2+BQ2DQ2, 解得:m33,m44,(舍去)此时Q3(3,2)满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(1,0)、Q3(3,2)【点睛】此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解