广东省梅州市梅江区实验中学达标名校2023年中考数学全真模拟试题含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列各数中比1小的数是()A2B1C0D12点A(m4,12m)在第四象限,则m的取值范围是 ()AmBm4Cm4Dm43小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()ABCD4如图,在平面直角坐标系中,把ABC绕原点O旋转180°得到CDA,点A,B,C的坐标分别为(5,2),(2,2),(5,2),则点D的坐标为()A(2,2)B(2,2)C(2,5)D(2,5)5如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,BEF=2BAC,FC=2,则AB的长为()A8B8C4D66某商品价格为元,降价10后,又降价10,因销售量猛增,商店决定再提价20,提价后这种商品的价格为( )A0.96元B0.972元C1.08元D元7点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A或2B或2C2或2D2或28某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )ABCD9下列各式:3+3=6;=1;+=2;=2;其中错误的有( )A3个B2个C1个D0个10下列计算结果为a6的是()Aa2a3 Ba12÷a2 C(a2)3 D(a2)3二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABC中,A60°,若剪去A得到四边形BCDE,则12_12如图,在中, ,点在上,交于点,交于点,当时,_13如图,在矩形ABCD中,DEAC,垂足为E,且tanADE,AC5,则AB的长_14在ABC中,C=90°,若tanA=,则sinB=_15一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_16已知n1,M,N,P,则M、N、P的大小关系为 三、解答题(共8题,共72分)17(8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元(1)该顾客至少可得到_元购物券,至多可得到_元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率18(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分 组频数频率第一组(0x15)30.15第二组(15x30)6a第三组(30x45)70.35第四组(45x60)b0.20(1)频数分布表中a=_,b=_,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?19(8分)如图,在ABC中,CAB90°,CBA50°,以AB为直径作O交BC于点D,点E在边AC上,且满足EDEA(1)求DOA的度数;(2)求证:直线ED与O相切20(8分)如图,ABC内接与O,AB是直径,O的切线PC交BA的延长线于点P,OFBC交AC于AC点E,交PC于点F,连接AF(1)判断AF与O的位置关系并说明理由;(2)若O的半径为4,AF=3,求AC的长21(8分)如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(2,1),B(1,4),C(3,2)画出ABC关于点B成中心对称的图形A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出ABC放大后的图形A2B2C2,并直接写出C2的坐标22(10分)如图,在平面直角坐标系xOy中,直线与双曲线(x>0)交于点求a,k的值;已知直线过点且平行于直线,点P(m,n)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x>0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为横、纵坐标都是整数的点叫做整点当时,直接写出区域内的整点个数;若区域内的整点个数不超过8个,结合图象,求m的取值范围23(12分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度(测角仪高度忽略不计)24某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图这次调查的市民人数为_人,m_,n_;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据两个负数比较大小,绝对值大的负数反而小,可得答案【详解】解:A、21,故A正确;B、11,故B错误;C、01,故C错误;D、11,故D错误;故选:A【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小2、B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可【详解】解:点A(m-1,1-2m)在第四象限, 解不等式得,m1,解不等式得,m所以,不等式组的解集是m1,即m的取值范围是m1故选B【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)3、A【解析】密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),当他忘记了末位数字时,要一次能打开的概率是.故选A.4、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(2,2),即可得出D的坐标为(2,2)详解:点A,C的坐标分别为(5,2),(5,2),点O是AC的中点,AB=CD,AD=BC,四边形ABCD是平行四边形,BD经过点O,B的坐标为(2,2),D的坐标为(2,2),故选A点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标5、D【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BOEF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得BAC=ABO,再根据三角形的内角和定理列式求出ABO=30°,即BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB,BE=BF,OE=OF,BOEF,在RtBEO中,BEF+ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,BAC=ABO,又BEF=2BAC,即2BAC+BAC=90°,解得BAC=30°,FCA=30°,FBC=30°,FC=2,BC=2,AC=2BC=4,AB=6,故选D点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出BAC=30°是解题的关键.6、B【解析】提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可【详解】第一次降价后的价格为a×(1-10%)=0.9a元,第二次降价后的价格为0.9a×(1-10%)=0.81a元,提价20%的价格为0.81a×(1+20%)=0.972a元,故选B【点睛】本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键7、C【解析】过B作直径,连接AC交AO于E,如图,根据已知条件得到BD=OB=2,如图,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论【详解】过B作直径,连接AC交AO于E,点B为的中点,BDAC,如图,点D恰在该圆直径上,D为OB的中点,BD=×4=2,OD=OB-BD=2,四边形ABCD是菱形,DE=BD=1,OE=1+2=3,连接OC,CE=,在RtDEC中,由勾股定理得:DC=;如图,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故选C【点睛】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键8、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比9、A【解析】3+3=6,错误,无法计算; =1,错误;+=2不能计算;=2,正确.故选A.10、C【解析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得【详解】A、a2a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(-a2)3=-a6,此选项不符合题意;故选C【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则二、填空题(本大题共6个小题,每小题3分,共18分)11、240.【解析】试题分析:1+2=180°+60°=240°考点:1.三角形的外角性质;2.三角形内角和定理12、1【解析】如图作PQAB于Q,PRBC于R由QPERPF,推出=2,可得PQ=2PR=2BQ,由PQBC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题【详解】如图,作PQAB于Q,PRBC于RPQB=QBR=BRP=90°,四边形PQBR是矩形,QPR=90°=MPN,QPE=RPF,QPERPF,=2,PQ=2PR=2BQPQBC,AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,2x+1x=1,x=,AP=5x=1故答案为:1【点睛】本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型13、3.【解析】先根据同角的余角相等证明ADEACD,在ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】四边形ABCD是矩形,ADC90°,ABCD,DEAC,AED90°,ADE+DAE90°,DAE+ACD90°,ADEACD,tanACDtanADE,设AD4k,CD3k,则AC5k,5k5,k1,CDAB3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.14、 【解析】分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案详解:如图所示:C=90°,tanA=,设BC=x,则AC=2x,故AB=x,则sinB=.故答案为: 点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键15、60°或120°【解析】首先根据题意画出图形,过点O作ODAB于点D, 通过垂径定理, 即可推出AOD的度数, 求得AOB的度数, 然后根据圆周角定理,即可推出AMB和ANB的度数.【详解】解:如图:连接OA,过点O作ODAB 于点D,OA=2,AB=,AD=BD=,AD:OA=:2,AOD=, AOB=,AMB=,ANB=.故答案为: 或.【点睛】本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.16、MPN【解析】n1,n-1>0,n>n-1,M>1,0<N<1,0<P<1,M最大;,,M>P>N.点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b; 如果a-b=0,那么a=b; 如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.三、解答题(共8题,共72分)17、解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)= ;解法二(列表法):(以下过程同“解法一”)【解析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回)即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元);解法二(列表法):01020300102030101030402020305030304050从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元);考点:列表法与树状图法.【详解】请在此输入详解!18、0.3 4 【解析】(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案【详解】(1)a=10.150.350.20=0.3;总人数为:3÷0.15=20(人),b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,所选两人正好都是甲班学生的概率是:=【点睛】本题考查了列表法或树状图法求概率以及条形统计图的知识用到的知识点为:概率=所求情况数与总情况数之比19、(1)DOA =100°;(2)证明见解析.【解析】试题分析:(1)根据CBA=50°,利用圆周角定理即可求得DOA的度数;(2)连接OE,利用SSS证明EAOEDO,根据全等三角形的性质可得EDO=EAO=90°,即可证明直线ED与O相切试题解析:(1)DBA=50°,DOA=2DBA=100°;(2)证明:连接OE,在EAO和EDO中,AO=DO,EA=ED,EO=EO,EAOEDO,得到EDO=EAO=90°,直线ED与O相切考点:圆周角定理;全等三角形的判定及性质;切线的判定定理20、解:(1)AF与圆O的相切理由为:如图,连接OC,PC为圆O切线,CPOCOCP=90°OFBC,AOF=B,COF=OCBOC=OB,OCB=BAOF=COF在AOF和COF中,OA=OC,AOF=COF,OF=OF,AOFCOF(SAS)OAF=OCF=90°AF为圆O的切线,即AF与O的位置关系是相切(2)AOFCOF,AOF=COFOA=OC,E为AC中点,即AE=CE=AC,OEACOAAF,在RtAOF中,OA=4,AF=3,根据勾股定理得:OF=1SAOF=OAAF=OFAE,AE=AC=2AE=【解析】试题分析:(1)连接OC,先证出3=2,由SAS证明OAFOCF,得对应角相等OAF=OCF,再根据切线的性质得出OCF=90°,证出OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE试题解析:(1)连接OC,如图所示:AB是O直径,BCA=90°,OFBC,AEO=90°,1=2,B=3,OFAC,OC=OA,B=1,3=2,在OAF和OCF中,OAFOCF(SAS),OAF=OCF,PC是O的切线,OCF=90°,OAF=90°,FAOA,AF是O的切线;(2)O的半径为4,AF=3,OAF=90°,OF=1FAOA,OFAC,AC=2AE,OAF的面积=AFOA=OFAE,3×4=1×AE,解得:AE=,AC=2AE=考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质21、(1)画图见解析;(2)画图见解析,C2的坐标为(6,4)【解析】试题分析:利用关于点对称的性质得出的坐标进而得出答案;利用关于原点位似图形的性质得出对应点位置进而得出答案试题解析:(1)A1BC1如图所示(2)A2B2C2如图所示,点C2的坐标为(6,4)22、(1),;(2) 3, .【解析】(1)将代入可求出a,将A点坐标代入可求出k;(2)根据题意画出函数图像,可直接写出区域内的整点个数;求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.【详解】解:(1)将代入得a=4将代入,得(2)区域内的整点个数是3直线是过点且平行于直线直线的表达式为当时,即线段PM上有整点 【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.23、30米【解析】设ADxm,在RtACD中,根据正切的概念用x表示出CD,在RtABD中,根据正切的概念列出方程求出x的值即可【详解】由题意得,ABD30°,ACD45°,BC60m,设ADxm,在RtACD中,tanACD,CDADx,BDBC+CDx+60,在RtABD中,tanABD,米,答:山高AD为30米【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键24、 (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度【解析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,156%12%=32%,(2)对“社会主义核心价值观”达到“A非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A非常了解”的程度