广东省河源市名校2023届中考数学适应性模拟试题含解析.doc
-
资源ID:87994596
资源大小:900.50KB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省河源市名校2023届中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一次函数y=2x+1的图像不经过 ( )A第一象限 B第二象限 C第三象限 D第四象限2如图,则的大小是ABCD3如图,在RtABC中,ACB90°,CD是AB边上的中线,AC8,BC6,则ACD的正切值是()ABCD4在0.3,3,0,这四个数中,最大的是()A0.3B3C0D5在平面直角坐标系中,若点A(a,b)在第一象限内,则点B(a,b)所在的象限是()A第一象限 B第二象限 C第三象限 D第四象限6广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )A3.65×103B3.65×104C3.65×105D3.65×1067若A(4,y1),B(3,y2),C(1,y3)为二次函数yx24x+m的图象上的三点,则y1,y2,y3的大小关系是( )Ay1y2y3 By3y2y1 Cy3y1y2 Dy1y3y28函数ymx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为()A0B0或2C0或2或2D2或29为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A极差是3.5B众数是1.5C中位数是3D平均数是310如图,在等腰直角ABC中,C=90°,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是()ABCD11如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()ABCD12下列几何体中三视图完全相同的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13|1|=_14如图,在RtABC中,BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_15如图所示,四边形ABCD中,对角线AC、BD交于点E,且,若,则CE的长为_16如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_米17在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F, DE=2,则EF:BE= _ 。18抛物线y=(x2)23的顶点坐标是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在直角坐标系中ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0)(1)请在图中画出ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形ABC(要求与ABC同在P点一侧),画出ABC关于y轴对称的A'B'C';(2)写出点A'的坐标20(6分)如图,在平面直角坐标系中,AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2)以点O为旋转中心,将AOB逆时针旋转90°,得到A1OB1画出A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度21(6分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:(1)C= °;(2)此时刻船与B港口之间的距离CB的长(结果保留根号)22(8分)如图,已知等边ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DEAC,垂足为E,过点E作EFAB,垂足为F,连接FD(1)求证:DE是O的切线;(2)求EF的长23(8分)如图,AB是O的直径,弦DE交AB于点F,O的切线BC与AD的延长线交于点C,连接AE(1)试判断AED与C的数量关系,并说明理由;(2)若AD=3,C=60°,点E是半圆AB的中点,则线段AE的长为 24(10分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲8 80.4乙 9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 (填“变大”、“变小”或“不变”)25(10分)在正方形网格中,每个小正方形的边长均为1个单位长度,ABC的三个顶点的位置如图所示现将ABC平移,使点A变换为点D,点E、F分别是B、C的对应点请画出平移后的DEF连接AD、CF,则这两条线段之间的关系是_26(12分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成已知每件产品的出厂价为60元工人甲第x天生产的产品数量为y件,y与x满足如下关系:工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?27(12分)已知:如图,在ABC中,AB=BC,ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据一次函数的系数判断出函数图象所经过的象限,由k=20,b=10可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】k=20,b=10,根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.2、D【解析】依据,即可得到,再根据,即可得到【详解】解:如图,又,故选:D【点睛】本题主要考查了平行线的性质,两直线平行,同位角相等3、D【解析】根据直角三角形斜边上的中线等于斜边的一半可得CDAD,再根据等边对等角的性质可得AACD,然后根据正切函数的定义列式求出A的正切值,即为tanACD的值【详解】CD是AB边上的中线,CDAD,AACD,ACB90°,BC6,AC8,tanA,tanACD的值故选D【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出AACD是解本题的关键4、A【解析】根据正数大于0,0大于负数,正数大于负数,比较即可【详解】-3-00.3最大为0.3故选A【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型5、D【解析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】点A(a,-b)在第一象限内,a>0,-b>0,b<0,点B(a,b)在第四象限,故选D【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负6、C【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将365000这个数用科学记数法表示为3.65×1故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、B【解析】根据函数解析式的特点,其对称轴为x=2,A(4,y1),B(3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3y2y1.【详解】抛物线y=x24x+m的对称轴为x=2,当x<2时,y随着x的增大而减小,因为-4<-3<1<2,所以y3y2y1,故选B.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键.8、C【解析】根据函数ymx2+(m+2)x+m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决【详解】解:函数ymx2+(m+2)x+m+1的图象与x轴只有一个交点,当m0时,y2x+1,此时y0时,x0.5,该函数与x轴有一个交点,当m0时,函数ymx2+(m+2)x+m+1的图象与x轴只有一个交点,则(m+2)24m(m+1)0,解得,m12,m22,由上可得,m的值为0或2或2,故选:C【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答9、C【解析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为51.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为×(2.5+3)=2.75,此选项错误;D.平均数为:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.10、B【解析】先根据翻折变换的性质得到DEFAEF,再根据等腰三角形的性质及三角形外角的性质可得到BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解【详解】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45°,由三角形外角性质得CDF+45°=BED+45°,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,sinBED=sinCDF=故选B【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中11、A【解析】分析:根据从上面看得到的图形是俯视图,可得答案详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图12、A【解析】找到从物体正面、左面和上面看得到的图形全等的几何体即可【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】原式利用立方根定义,以及绝对值的代数意义计算即可求出值【详解】解:原式=31=2,故答案为:2【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键14、2 【解析】过点E作EFBC于F,根据已知条件得到BEF是等腰直角三角形,求得BEABAE6,根据勾股定理得到BFEF3,求得DFBFBD,根据勾股定理即可得到结论【详解】解:过点E作EFBC于F,BFE90°,BAC90°,ABAC4,BC45°,BC4,BEF是等腰直角三角形,BEABAE6,BFEF3,D是BC的中点,BD2,DFBFBD,DE=2故答案为2【点睛】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键15、【解析】此题有等腰三角形,所以可作BHCD,交EC于点G,利用三线合一性质及邻补角互补可得BGD=120°,根据四边形内角和360°,得到ABG+ADG=180°此时再延长GB至K,使AK=AG,构造出等边AGK易证ABKADG,从而说明ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在RtDBH中利用勾股定理及三角函数知识得到EBG的正切值,然后作EFBG,求出EF,在RtEFG中解出EG长度,最后CE=CG+GE求解【详解】如图,作于H,交AC于点G,连接DG,BH垂直平分CD,延长GB至K,连接AK使,则是等边三角形,又,(),是等边三角形,设,则,在中,解得,当时,所以,作,设,则,故答案为【点睛】本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键16、5200【解析】设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得: 解得 所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息17、4:7或2:5【解析】根据E在CD上和CD的延长线上,运用相似三角形分类讨论即可.【详解】解:当E在线段CD上如图:矩形ABCDABCDABFCFE 设,即EF=2k,BF=3kBE=BF+EF=5kEF:BE=2k5k=25当当E在线段CD的延长线上如图:矩形ABCDABCDABFCFE 设,即EF=4k,BF=3kBE=BF+EF=7kEF:BE=4k7k=47故答案为:4:7或2:5.【点睛】本题以矩形为载体,考查了相似三角形的性质,解题的关键在于根据图形分类讨论,即数形结合的灵活应用.18、(2,3)【解析】根据:对于抛物线y=a(xh)2+k的顶点坐标是(h,k).【详解】抛物线y=(x2)23的顶点坐标是(2,3).故答案为(2,3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)点A'的坐标为(-3,3)【解析】解:(1),A'B'C'如图所示(2)点A'的坐标为(-3,3).20、(1)作图见解析;(2)A1(0,1),点B1(2,2)(3) 【解析】(1)按要求作图.(2)由(1)得出坐标.(3)由图观察得到,再根据勾股定理得到长度.【详解】解:(1)画出A1OB1,如图(2)点A1(0,1),点B1(2,2)(3)OB1OB2【点睛】本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键.21、(1)60;(2)【解析】(1)由平行线的性质以及方向角的定义得出FBA=EAB=30°,FBC=75°,那么ABC=45°,又根据方向角的定义得出BAC=BAE+CAE=75°,利用三角形内角和定理求出C=60°;(2)作ADBC交BC于点D,解RtABD,得出BD=AD=30,解RtACD,得出CD=10,根据BC=BD+CD即可求解.解:(1)如图所示,EAB=30°,AEBF,FBA=30°,又FBC=75°,ABC=45°,BAC=BAE+CAE=75°,C=60°故答案为60; (2)如图,作ADBC于D, 在RtABD中,ABD=45°,AB=60,AD=BD=30 在RtACD中,C=60°,AD=30,tanC=,CD=10, BC=BD+CD=30+10答:该船与B港口之间的距离CB的长为(30+10)海里 22、 (1)见解析;(2) .【解析】(1)连接OD,根据切线的判定方法即可求出答案;(2)由于ODAC,点O是AB的中点,从而可知OD为ABC的中位线,在RtCDE中,C60°,CECD1,所以AEACCE413,在RtAEF中,所以EFAEsinA3×sin60°.【详解】(1)连接OD,ABC是等边三角形,C=A=B=60°,OD=OB,ODB是等边三角形,ODB=60°ODB=C,ODAC,DEACODDE,DE是O的切线(2)ODAC,点O是AB的中点,OD为ABC的中位线,BD=CD=2在RtCDE中,C=60°,CDE=30°,CE=CD=1AE=ACCE=41=3在RtAEF中,A=60°,EF=AEsinA=3×sin60°=【点睛】本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型23、(1)AED=C,理由见解析;(2) 【解析】(1)根据切线的性质和圆周角定理解答即可;(2)根据勾股定理和三角函数进行解答即可【详解】(1)AED=C,证明如下:连接BD,可得ADB=90°,C+DBC=90°,CB是O的切线,CBA=90°,ABD+DBC=90°,ABD=C,AEB=ABD,AED=C,(2)连接BE,AEB=90°,C=60°,CAB=30°,在RtDAB中,AD=3,ADB=90°,cosDAB=,解得:AB=2,E是半圆AB的中点,AE=BE,AEB=90°,BAE=45°,在RtAEB中,AB=2,ADB=90°,cosEAB=,解得:AE=故答案为【点睛】此题考查了切线的性质、直角三角形的性质以及圆周角定理此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法24、(1)填表见解析;(2)理由见解析;(3)变小【解析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.(3)根据方差公式求解:如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小【详解】试题分析:试题解析:解:(1)甲的众数为8,乙的平均数=(5+9+7+10+9)=8,乙的中位数为9.故填表如下:平均数众数中位数方差甲8 8 80.4乙 8 9 9 3.2(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小考点:1.方差;2.算术平均数;3.中位数;4.众数25、见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是ADCF,且ADCF26、 (1)工人甲第12天生产的产品数量为70件;(2)第11天时,利润最大,最大利润是845元【解析】分析:(1)根据y=70求得x即可;(2)先根据函数图象求得P关于x的函数解析式,再结合x的范围分类讨论,根据“总利润=单件利润×销售量”列出函数解析式,由二次函数的性质求得最值即可本题解析:解:(1)若7.5x70,得x>4,不符合题意;则5x1070,解得x12.答:工人甲第12天生产的产品数量为70件(2)由函数图象知,当0x4时,P40,当4<x14时,设Pkxb,将(4,40)、(14,50)代入,得解得Px36.当0x4时,W(6040)·7.5x150x,W随x的增大而增大,当x4时,W最大600;当4<x14时,W(60x36)(5x10)5x2110x2405(x11)2845,当x11时,W最大845.845>600,当x11时,W取得最大值845元答:第11天时,利润最大,最大利润是845元点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题27、(1)见解析 (2)见解析【解析】(1)由三角形中位线知识可得DFBG,GHBF,根据菱形的判定的判定可得四边形FBGH是菱形;(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解【详解】(1)点F、G是边AC的三等分点,AF=FG=GC又点D是边AB的中点,DHBG同理:EHBF四边形FBGH是平行四边形,连结BH,交AC于点O,OF=OG,AO=CO,AB=BC,BHFG,四边形FBGH是菱形;(2)四边形FBGH是平行四边形,BO=HO,FO=GO又AF=FG=GC,AF+FO=GC+GO,即:AO=CO四边形ABCH是平行四边形ACBH,AB=BC,四边形ABCH是正方形【点睛】本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键