广东省汕尾市甲子镇瀛江校2023届毕业升学考试模拟卷数学卷含解析.doc
-
资源ID:87994674
资源大小:1.09MB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省汕尾市甲子镇瀛江校2023届毕业升学考试模拟卷数学卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)12017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A6.5×105 B6.5×106 C6.5×107 D65×1052如图,矩形ABCD的顶点A、C分别在直线a、b上,且ab,1=60°,则2的度数为( )A30°B45°C60°D75°3已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是()Ak8Bk8Ck8Dk84如图,菱形ABCD的边长为2,B=30°动点P从点B出发,沿 B-C-D的路线向点D运动设ABP的面积为y(B、P两点重合时,ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )ABCD5若关于x的不等式组只有5个整数解,则a的取值范围( )ABCD6下列运算正确的是()Ax4+x4=2x8 B(x2)3=x5 C(xy)2=x2y2 Dx3x=x47下列计算正确的是()A5x2x=3xB(a+3)2=a2+9C(a3)2=a5Da2p÷ap=a3p8如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )A28cm2B27cm2C21cm2D20cm29如图,将ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DEBC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是()ABCD10在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家”其中3400000用科学记数法表示为()A0.34×107B3.4×106C3.4×105D34×105二、填空题(共7小题,每小题3分,满分21分)11如图,D,E分别是ABC的边AB、BC上的点,且DEAC,AE、CD相交于点O,若SDOE:SCOA=1:16,则SBDE与SCDE的比是_12如图,已知,则_.13如图,直线经过正方形的顶点分别过此正方形的顶点、作于点、 于点若,则的长为_14如图,在RtABC中,ACB=90°,BC=6,CD是斜边AB上的中线,将BCD沿直线CD翻折至ECD的位置,连接AE若DEAC,计算AE的长度等于_15二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为_16某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg17计算的结果是_.三、解答题(共7小题,满分69分)18(10分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示(1)a= ,b= ;(2)确定y2与x之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?19(5分)计算:+( )1+|1|4sin45°20(8分)如图,在RtABC中,C=90°,O、D分别为AB、AC上的点,经过A、D两点的O分别交于AB、AC于点E、F,且BC与O相切于点D(1)求证:;(2)当AC=2,CD=1时,求O的面积21(10分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为(1)当时,求四边形的面积;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;(3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标22(10分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k0,x0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k0,x0)的图象于点P,过点P作PFy轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒(1)求该反比例函数的解析式(2)求S与t的函数关系式;并求当S=时,对应的t值(3)在点E的运动过程中,是否存在一个t值,使FBO为等腰三角形?若有,有几个,写出t值23(12分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图所示的试验,并根据试验数据绘制出图所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升? 图 图24(14分)如图,在ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD(1)求证:四边形CDBF是平行四边形;(2)若FDB=30°,ABC=45°,BC=4,求DF的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数【详解】将6500000用科学记数法表示为:6.5×106.故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.2、C【解析】试题分析:过点D作DEa,四边形ABCD是矩形,BAD=ADC=90°,3=90°1=90°60°=30°,ab,DEab,4=3=30°,2=5,2=90°30°=60°故选C考点:1矩形;2平行线的性质.3、A【解析】本题考查反比例函数的图象和性质,由k-80即可解得答案【详解】反比例函数y=的图象位于第一、第三象限,k-80,解得k8,故选A【点睛】本题考查了反比例函数的图象和性质:、当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限、当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大4、C【解析】先分别求出点P从点B出发,沿BCD向终点D匀速运动时,当0x2和2x4时,y与x之间的函数关系式,即可得出函数的图象【详解】由题意知,点P从点B出发,沿BCD向终点D匀速运动,则当0x2,y=x,当2x4,y=1,由以上分析可知,这个分段函数的图象是C故选C5、A【解析】分别解两个不等式得到得x20和x3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2ax20,且整数解为15、16、17、18、19,得到143-2a15,然后再解关于a的不等式组即可【详解】解得x20解得x3-2a,不等式组只有5个整数解,不等式组的解集为3-2ax20,143-2a15,故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式143-2a15是解此题的关键6、D【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (xy)2=x22xy+y2 ,故错误; D. x3x=x4,正确,故选D.7、D【解析】直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案【详解】解:A5x2x=7x,故此选项错误;B(a+3)2=a2+6a+9,故此选项错误;C(a3)2=a6,故此选项错误;Da2p÷ap=a3p,正确故选D【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键8、B【解析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得【详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC矩形FDCE,则 设DF=xcm,得到:解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键9、C【解析】利用相似三角形的性质即可判断【详解】设ADx,AEy,DEBC,ADEABC,x9,y12,故选:C【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型10、B【解析】解:3400000=.故选B.二、填空题(共7小题,每小题3分,满分21分)11、1:3【解析】根据相似三角形的判定,由DEAC,可知DOECOA,BDEBCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.故答案为1:3.12、65°【解析】根据两直线平行,同旁内角互补求出3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】mn,1=105°,3=180°1=180°105°=75°=23=140°75°=65°故答案为:65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出3.13、13【解析】根据正方形的性质得出AD=AB,BAD=90°,根据垂直得出DEA=AFB=90°,求出EDA=FAB,根据AAS推出AEDBFA,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;【详解】ABCD是正方形(已知),AB=AD,ABC=BAD=90°;又FAB+FBA=FAB+EAD=90°,FBA=EAD(等量代换);BFa于点F,DEa于点E,在RtAFB和RtAED中,AFBAED(AAS),AF=DE=8,BF=AE=5(全等三角形的对应边相等),EF=AF+AE=DE+BF=8+5=13.故答案为13.点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出AEDBFA是解此题的关键14、2 【解析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长【详解】由题意可得,DE=DB=CD=AB,DEC=DCE=DCB,DEAC,DCE=DCB,ACB=90°,DEC=ACE,DCE=ACE=DCB=30°,ACD=60°,CAD=60°,ACD是等边三角形,AC=CD,AC=DE,ACDE,AC=CD,四边形ACDE是菱形,在RtABC中,ACB=90°,BC=6,B=30°,AC=2,AE=2故答案为2【点睛】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答15、-1【解析】将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值【详解】解:二次函数y=(a-1)x2-x+a2-1 的图象经过原点, a2-1=2, a=±1, a-12, a1, a的值为-1 故答案为-1【点睛】本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=216、20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg17、【解析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并【详解】.【点睛】考点:二次根式的加减法三、解答题(共7小题,满分69分)18、(1)a=6,b=8;(2);(3)A团有20人,B团有30人.【解析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0x10与x10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0x10与x10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y1图像上点(10,480),得到10人的费用为480元,a=;由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,b=;(2)0x10时,设y2=k2x,把(10, 800)代入得10k2=800,解得k2=80,y2=80x,x10,设y2=kx+b,把(10, 800)和(20,1440)代入得解得y2=64x+160(3)设B团有n人,则A团的人数为(50-n)当0n10时80n+48(50-n)=3040,解得n=20(不符合题意舍去)当n10时,解得n=30.则50-n=20人,则A团有20人,B团有30人.【点睛】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.19、 【解析】根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论【详解】解:+()1+|1|1sin15°=23+11×=23+12=1【点睛】此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键20、(1)证明见解析;(2). 【解析】(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积【详解】证明:连接OD,BC为圆O的切线,ODCB,ACCB,ODAC,CAD=ODA,OA=OD,OAD=ODA,CAD=OAD,则 ;(2)解:连接ED,在RtACD中,AC=2,CD=1,根据勾股定理得:AD= ,CAD=OAD,ACD=ADE=90°,ACDADE,即AD2=ACAE,AE=,即圆的半径为 ,则圆的面积为 【点睛】此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键21、(1)4;(2),;(3)【解析】(1)过点D作DEx轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;(2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;(3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论【详解】解:(1)过点D作DEx轴于点E当时,得到,顶点,DE=1由,得,;令,得;,OC=3(2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,由翻折得:,;,轴,由勾股定理得:,解得:(不符合题意,舍去),;,(3)原抛物线的顶点在直线上,直线交轴于点,如图2,过点作轴于,;由题意,平移后的新抛物线顶点为,解析式为,设点,则,过点作于,于,轴于,、分别平分,点在抛物线上,根据题意得:解得:【点睛】此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键22、(1)y=(x0);(2)S与t的函数关系式为:S=3t+9(0t3);S=9(t3);当S=时,对应的t值为或6;(3)当t=或或3时,使FBO为等腰三角形【解析】(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式(2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)=9-去分析求解即可求得答案;(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案【详解】解:(1)正方形OABC的面积为9,点B的坐标为:(3,3),点B在反比例函数y=(k0,x0)的图象上,3=,即k=9,该反比例函数的解析式为:y= y=(x0);(2)根据题意得:P(t,),分两种情况:当点P1在点B的左侧时,S=t(3)=3t+9(0t3);若S=,则3t+9=,解得:t=;当点P2在点B的右侧时,则S=(t3)=9;若S=,则9=,解得:t=6;S与t的函数关系式为:S=3t+9(0t3);S=9(t3);当S=时,对应的t值为或6;(3)存在若OB=BF=3,此时CF=BC=3,OF=6,6=,解得:t=;若OB=OF=3,则3=,解得:t= ;若BF=OF,此时点F与C重合,t=3;当t=或或3时,使FBO为等腰三角形【点睛】此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用23、(1)0.3 L;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】(1)根据点的实际意义可得;(2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为Wkt0.3. 又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k0.30.9,解得k0.4.故W与t之间的函数关系式为W0.4t0.3.当t24时,W0.4×240.39.9(L),9.90.39.6(L),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.24、(1)证明见解析;(2)1.【解析】(1)先证明出CEFBED,得出CF=BD即可证明四边形CDBF是平行四边形;(2)作EMDB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,EDM=30°,由此可得出结论【详解】解:(1)证明:CFAB,ECF=EBDE是BC中点,CE=BECEF=BED,CEFBEDCF=BD四边形CDBF是平行四边形(2)解:如图,作EMDB于点M,四边形CDBF是平行四边形,BC=,DF=2DE在RtEMB中,EM=BEsinABC=2,在RtEMD中,EDM=30°,DE=2EM=4,DF=2DE=1【点睛】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.