广东省深圳市光明区2023届中考数学押题卷含解析.doc
-
资源ID:87994785
资源大小:1.02MB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省深圳市光明区2023届中考数学押题卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在17月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A3月份B4月份C5月份D6月份2已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是.()A3,2B3,4C5,2D5,43如图是二次函数y=ax2+bx+c的图象,有下列结论:ac1;a+b1;4acb2;4a+2b+c1其中正确的个数是()A1个B2个C3个D4个4某公园里鲜花的摆放如图所示,第个图形中有3盆鲜花,第个图形中有6盆鲜花,第个图形中有11盆鲜花,按此规律,则第个图形中的鲜花盆数为()A37B38C50D515若关于x的一元二次方程x22xk0没有实数根,则k的取值范围是( )Ak1Bk1Ck1Dk16方程的解是( ).ABCD7若÷,则“”可能是()ABCD8在以下四个图案中,是轴对称图形的是()ABCD9下列图形中,既是中心对称图形又是轴对称图形的是 ( )ABCD10如图,二次函数y=ax1+bx+c(a0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC则下列结论:abc0;9a+3b+c0;c1;关于x的方程ax1+bx+c=0(a0)有一个根为;抛物线上有两点P(x1,y1)和Q(x1,y1),若x11x1,且x1+x14,则y1y1其中正确的结论有()A1个B3个C4个D5个二、填空题(共7小题,每小题3分,满分21分)11如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留)为_.12分解因式:_.13如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为_14如图,在平面直角坐标系中,抛物线可通过平移变换向_得到抛物线,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是_15若有意义,则x 的取值范围是 16分解因:=_17如图,在平面直角坐标系中,点A是抛物线与y轴的交点,点B是这条抛物线上的另一点,且ABx轴,则以AB为边的等边三角形ABC的周长为 .三、解答题(共7小题,满分69分)18(10分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“”表示该项数据已丢失)x101ax21ax2+bx+c72(1)求抛物线y=ax2+bx+c的表达式(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当ADM与BDM的面积比为2:3时,求B点坐标;(3)在(2)的条件下,设线段BD与x轴交于点C,试写出BAD和DCO的数量关系,并说明理由19(5分)在中,是边的中线,于,连结,点在射线上(与,不重合)(1)如果如图1, 如图2,点在线段上,连结,将线段绕点逆时针旋转,得到线段,连结,补全图2猜想、之间的数量关系,并证明你的结论;(2)如图3,若点在线段 的延长线上,且,连结,将线段绕点逆时针旋转得到线段,连结,请直接写出、三者的数量关系(不需证明)20(8分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在RtABC中,C=90°,AC=BC=6cm,D是线段AB上一动点,射线DEBC于点E,EDF=60°,射线DF与射线AC交于点F设B,E两点间的距离为xcm,E,F两点间的距离为ycm(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm6.95.34.03.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当DEF为等边三角形时,BE的长度约为 cm21(10分)在ABC中,ABAC,以AB为直径的O交AC于点E,交BC于点D,P为AC延长线上一点,且PBCBAC,连接DE,BE(1)求证:BP是O的切线;(2)若sinPBC,AB10,求BP的长22(10分)已知关于x的一元二次方程x2(m+3)x+m+2=1(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值23(12分)在中,以为直径的圆交于,交于.过点的切线交的延长线于求证:是的切线24(14分)如图,抛物线yax2+bx+c(a0)的顶点为M,直线ym与抛物线交于点A,B,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶由定义知,取AB中点N,连结MN,MN与AB的关系是_抛物线y对应的准蝶形必经过B(m,m),则m_,对应的碟宽AB是_抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1求抛物线的解析式;在此抛物线的对称轴上是否有这样的点P(xp,yp),使得APB为锐角,若有,请求出yp的取值范围若没有,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:各月每斤利润:3月:7.5-4.53元,4月:6-2.53.5元,5月:4.5-22.5元,6月:3-1.51.5元,所以,4月利润最大,故选B2、B【解析】试题分析:平均数为(a2 + b2 + c2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.3、C【解析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断【详解】解:根据图示知,该函数图象的开口向上,a>1;该函数图象交于y轴的负半轴,c<1;故正确;对称轴 b<1;故正确;根据图示知,二次函数与x轴有两个交点,所以,即,故错误故本选项正确正确的有3项故选C【点睛】本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置4、D【解析】试题解析:第个图形中有 盆鲜花,第个图形中有盆鲜花,第个图形中有盆鲜花,第n个图形中的鲜花盆数为则第个图形中的鲜花盆数为故选C.5、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根6、B【解析】直接解分式方程,注意要验根.【详解】解:=0,方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,解这个一元一次方程,得:x=,经检验,x=是原方程的解.故选B.【点睛】本题考查了解分式方程,解分式方程不要忘记验根.7、A【解析】直接利用分式的乘除运算法则计算得出答案【详解】。故选:A【点睛】考查了分式的乘除运算,正确分解因式再化简是解题关键8、A【解析】根据轴对称图形的概念对各选项分析判断利用排除法求解【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选:A【点睛】本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合9、C【解析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.10、D【解析】根据抛物线的图象与系数的关系即可求出答案【详解】解:由抛物线的开口可知:a0,由抛物线与y轴的交点可知:c0,由抛物线的对称轴可知:0,b0,abc0,故正确;令x=3,y0,9a+3b+c0,故正确;OA=OC1,c1,故正确;对称轴为直线x=1,=1,b=4aOA=OC=c,当x=c时,y=0,ac1bc+c=0,acb+1=0,ac+4a+1=0,c=,设关于x的方程ax1+bx+c=0(a0)有一个根为x,xc=4,x=c+4=,故正确;x11x1,P、Q两点分布在对称轴的两侧,1x1(x11)=1x1x1+1=4(x1+x1)0,即x1到对称轴的距离小于x1到对称轴的距离,y1y1,故正确故选D【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定本题属于中等题型二、填空题(共7小题,每小题3分,满分21分)11、250【解析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱由三视图可得圆柱的半径和高,易求体积【详解】该立体图形为圆柱,圆柱的底面半径r=5,高h=10,圆柱的体积V=r2h=×52×10=250(立方单位)答:立体图形的体积为250立方单位故答案为250.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高12、a(a 4)2【解析】首先提取公因式a,进而利用完全平方公式分解因式得出即可【详解】 故答案为:【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.13、 【解析】试题解析:四边形ABCD是矩形,OB=OD,OA=OC,AC=BD,OA=OB,AE垂直平分OB,AB=AO,OA=AB=OB=3,BD=2OB=6,AD=【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键14、先向右平移2个单位再向下平移2个单位; 4 【解析】.平移后顶点坐标是(2,-2),利用割补法,把x轴上方阴影部分补到下方,可以得到矩形面积,面积是.15、x【解析】略16、 (x-2y)(x-2y+1)【解析】根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【详解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)17、18。【解析】根据二次函数的性质,抛物线的对称轴为x=3。A是抛物线与y轴的交点,点B是这条抛物线上的另一 点,且ABx轴。A,B关于x=3对称。AB=6。又ABC是等边三角形,以AB为边的等边三角形ABC的周长为6×3=18。三、解答题(共7小题,满分69分)18、 (1) y=x24x+2;(2) 点B的坐标为(5,7);(1)BAD和DCO互补,理由详见解析.【解析】(1)由(1,1)在抛物线y=ax2上可求出a值,再由(1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;(2)由ADM和BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作ANx轴,交BD于点N,则AND=DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合ABD=NBA,可证出ABDNBA,根据相似三角形的性质可得出ANB=DAB,再由ANB+AND=120°可得出DAB+DCO=120°,即BAD和DCO互补【详解】(1)当x=1时,y=ax2=1,解得:a=1;将(1,7)、(0,2)代入y=x2+bx+c,得:,解得:,抛物线的表达式为y=x24x+2;(2)ADM和BDM同底,且ADM与BDM的面积比为2:1,点A到抛物线的距离与点B到抛物线的距离比为2:1抛物线y=x24x+2的对称轴为直线x=2,点A的横坐标为0,点B到抛物线的距离为1,点B的横坐标为1+2=5,点B的坐标为(5,7)(1)BAD和DCO互补,理由如下:当x=0时,y=x24x+2=2,点A的坐标为(0,2),y=x24x+2=(x2)22,点D的坐标为(2,2)过点A作ANx轴,交BD于点N,则AND=DCO,如图所示设直线BD的表达式为y=mx+n(m0),将B(5,7)、D(2,2)代入y=mx+n,解得:,直线BD的表达式为y=1x2当y=2时,有1x2=2,解得:x=,点N的坐标为(,2)A(0,2),B(5,7),D(2,2),AB=5,BD=1,BN=,=又ABD=NBA,ABDNBA,ANB=DABANB+AND=120°,DAB+DCO=120°,BAD和DCO互补【点睛】本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明ABDNBA是解(1)的关键.19、(1)60;理由见解析;(2),理由见解析.【解析】(1)根据直角三角形斜边中线的性质,结合,只要证明是等边三角形即可;根据全等三角形的判定推出,根据全等的性质得出,(2)如图2,求出,求出,根据全等三角形的判定得出,求出,推出,解直角三角形求出即可【详解】解:(1),是等边三角形,故答案为60.如图1,结论:理由如下:,是的中点,线段绕点逆时针旋转得到线段,在和中,(2)结论:理由:,是的中点,线段绕点逆时针旋转得到线段,在和中,而,在中,即【点睛】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出是解此题的关键,综合性比较强,证明过程类似20、(1)见解析;(1)3.5;(3)见解析; (4)3.1【解析】根据题意作图测量即可【详解】(1)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当DEF为等边三角形是,EF=DE,由B=45°,射线DEBC于点E,则BE=EF即y=x所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1【点睛】本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究21、(1)证明见解析;(2) 【解析】(1)连接AD,求出PBCABC,求出ABP90°,根据切线的判定得出即可;(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可【详解】解:(1)连接AD,AB是O的直径,ADB=90°,ADBC,AB=AC,AD平分BAC,BAD=BAC,ADB=90°,BAD+ABD=90°,PBC=BAC,PBC+ABD=90°,ABP=90°,即ABBP,PB是O的切线;(2)PBC=BAD,sinPBC=sinBAD,sinPBC=,AB=10,BD=2,由勾股定理得:AD=4,BC=2BD=4,由三角形面积公式得:AD×BC=BE×AC,4×4=BE×10,BE=8,在RtABE中,由勾股定理得:AE=6,BAE=BAP,AEB=ABP=90°,ABEAPB,=,PB=【点睛】本题考查了切线的判定、圆周角定理、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键22、 (1)见解析;(2) m=-1.【解析】(1)根据方程的系数结合根的判别式,即可得出=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论【详解】(1)=(m+3)24(m+2)=(m+1)2无论m取何值,(m+1)2恒大于等于1原方程总有两个实数根(2)原方程可化为:(x-1)(x-m-2)=1x1=1, x2=m+2方程两个根均为正整数,且m为负整数m=-1.【点睛】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.23、证明见解析【解析】连接OE,由OB=OD和AB=AC可得,则OFAC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论【详解】证明:如图,连接,则,即,在和中,是的切线,则,则,是的切线【点睛】本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键24、(1)MN与AB的关系是:MNAB,MNAB,(2)2,4;(2)yx22;在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【解析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)根据题意得出抛物线必过(2,0),进而代入求出答案;根据yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,进而得出答案【详解】(1)MN与AB的关系是:MNAB,MNAB,如图1,AMB是等腰直角三角形,且N为AB的中点,MNAB,MNAB,故答案为MNAB,MNAB;(2)抛物线y对应的准蝶形必经过B(m,m),mm2,解得:m2或m0(不合题意舍去),当m2则,2x2,解得:x±2,则AB2+24;故答案为2,4;(2)由已知,抛物线对称轴为:y轴,抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1抛物线必过(2,0),代入yax24a(a0),得,9a4a0,解得:a,抛物线的解析式是:yx22;由知,如图2,yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键