广东省深圳宝安区四校联考2022-2023学年中考数学五模试卷含解析.doc
-
资源ID:87994789
资源大小:769.50KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
广东省深圳宝安区四校联考2022-2023学年中考数学五模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )ABCD2如图1,点F从菱形ABCD的顶点A出发,沿ADB以1cm/s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()AB2CD23如图,已知RtABC中,BAC=90°,将ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则CFD的度数为()A80°B90°C100°D120°4方程的解为()Ax=4Bx=3Cx=6D此方程无解5|3|()ABC3D36如图,在正方形ABCD中,AB,P为对角线AC上的动点,PQAC交折线ADC于点Q,设APx,APQ的面积为y,则y与x的函数图象正确的是()ABCD7如图,把一块直角三角板的直角顶点放在直尺的一边上,若1=50°,则2的度数为( )A50°B40°C30°D25°8一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )ABCD92cos 30°的值等于()A1BCD210二次函数y=(x+2)21的图象的对称轴是()A直线x=1B直线x=1C直线x=2D直线x=2二、填空题(本大题共6个小题,每小题3分,共18分)11因式分解:2b2a2a3bab3=_12在中,若,则的度数是_13不解方程,判断方程2x2+3x20的根的情况是_14数据2,0,1,2,5的平均数是_,中位数是_15如图,在矩形ABCD中,点E是边CD的中点,将ADE沿AE折叠后得到AFE,且点F在矩形ABCD内部将AF延长交边BC于点G若,则 (用含k的代数式表示)16()2(3.14)0_三、解答题(共8题,共72分)17(8分)如图,在ABC中,AB=AC,ABC=72°(1)用直尺和圆规作ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出ABC的平分线BD后,求BDC的度数18(8分)如图,ABC是O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形(1)求证:AC=CE;(2)求证:BC2AC2=ABAC;(1)已知O的半径为1若=,求BC的长;当为何值时,ABAC的值最大?19(8分)如图,求证:。20(8分)有4张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m,在随机抽取1张,将卡片的数字即为n(1)请用列表或树状图的方式把(m,n)所有的结果表示出来(2)求选出的(m,n)在二、四象限的概率21(8分)计算:|1|2sin45°+22(10分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.23(12分)计算:(2016)0+|3|4cos45°24如图,AB是半径为2的O的直径,直线l与AB所在直线垂直,垂足为C,OC3,P是圆上异于A、B的动点,直线AP、BP分别交l于M、N两点(1)当A30°时,MN的长是 ;(2)求证:MCCN是定值;(3)MN是否存在最大或最小值,若存在,请写出相应的最值,若不存在,请说明理由;(4)以MN为直径的一系列圆是否经过一个定点,若是,请确定该定点的位置,若不是,请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据已知三点和近似满足函数关系y=ax2+bx+c(a0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41旋钮的旋转角度在36°和54°之间,约为41时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点2、C【解析】通过分析图象,点F从点A到D用as,此时,FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a【详解】过点D作DEBC于点E.由图象可知,点F由点A到点D用时为as,FBC的面积为acm1.AD=a.DEADa.DE=1.当点F从D到B时,用s.BD=.RtDBE中,BE=,四边形ABCD是菱形,EC=a-1,DC=a,RtDEC中,a1=11+(a-1)1.解得a=.故选C【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系3、B【解析】根据旋转的性质得出全等,推出B=D,求出B+BEF=D+AED=90°,根据三角形外角性质得出CFD=B+BEF,代入求出即可【详解】解:将ABC绕点A顺时针旋转得到ADE,ABCADE,B=D,CAB=BAD=90°,BEF=AED,B+BEF+BFE=180°,D+BAD+AED=180°,B+BEF=D+AED=180°90°=90°,CFD=B+BEF=90°,故选:B【点睛】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键4、C【解析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x2得到1(x2)3,解得x6.将x6代入x2得624,x6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.5、C【解析】根据绝对值的定义解答即可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.6、B【解析】在正方形ABCD中, AB=,AC4,ADDC,DAPDCA45o,当点Q在AD上时,PAPQ,DP=AP=x,S ;当点Q在DC上时,PCPQCP4x,S;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况7、B【解析】解:如图,由两直线平行,同位角相等,可求得3=1=50°,根据平角为180°可得,2=90°50°=40°故选B【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键8、D【解析】试题分析:列表如下黑白1白2黑(黑,黑)(白1,黑)(白2,黑)白1(黑,白1)(白1,白1)(白2,白1)白2(黑,白2)(白1,白2)(白2,白2)由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是故答案选D考点:用列表法求概率9、C【解析】分析:根据30°角的三角函数值代入计算即可.详解:2cos30°=2×=故选C点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.10、D【解析】根据二次函数顶点式的性质解答即可.【详解】y=(x+2)21是顶点式,对称轴是:x=-2,故选D.【点睛】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、ab(ab)2【解析】首先确定公因式为ab,然后提取公因式整理即可【详解】2b2a2a3bab3=ab(2ab-a2-b2)=ab(ab)2,所以答案为ab(ab)2.【点睛】本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.12、【解析】先根据非负数的性质求出,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论【详解】在中,故答案为:【点睛】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.13、有两个不相等的实数根【解析】分析:先求一元二次方程的判别式,由与0的大小关系来判断方程根的情况详解:a=2,b=3,c=2, 一元二次方程有两个不相等的实数根.故答案为有两个不相等的实数根点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.14、0.8 0 【解析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数【详解】平均数=(2+01+2+5)÷5=0.8;把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.15、。【解析】试题分析:如图,连接EG,设,则。点E是边CD的中点,。ADE沿AE折叠后得到AFE,。易证EFGECG(HL),。在RtABG中,由勾股定理得: ,即。(只取正值)。16、3.【解析】试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果原式=4-1=3.考点:负整数指数幂;零指数幂三、解答题(共8题,共72分)17、(1)作图见解析(2)BDC=72°【解析】解:(1)作图如下:(2)在ABC中,AB=AC,ABC=72°,A=180°2ABC=180°144°=36°AD是ABC的平分线,ABD=ABC=×72°=36°BDC是ABD的外角,BDC=A+ABD=36°+36°=72°(1)根据角平分线的作法利用直尺和圆规作出ABC的平分线:以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D(2)先根据等腰三角形的性质及三角形内角和定理求出A的度数,再由角平分线的性质得出ABD的度数,再根据三角形外角的性质得出BDC的度数即可18、(1)证明见解析;(2)证明见解析;(1)BC=4;【解析】分析:(1)由菱形知D=BEC,由A+D=BEC+AEC=180°可得A=AEC,据此得证;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证BEFBGA得,即BFBG=BEAB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)设AB=5k、AC=1k,由BC2-AC2=ABAC知BC=2k,连接ED交BC于点M,RtDMC中由DC=AC=1k、MC=BC=k求得DM=k,可知OM=OD-DM=1-k,在RtCOM中,由OM2+MC2=OC2可得答案设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得ABAC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案详解:(1)四边形EBDC为菱形,D=BEC,四边形ABDC是圆的内接四边形,A+D=180°,又BEC+AEC=180°,A=AEC,AC=CE;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,CF=CG=AC,四边形AEFG是C的内接四边形,G+AEF=180°,又AEF+BEF=180°,G=BEF,EBF=GBA,BEFBGA,即BFBG=BEAB,BF=BCCF=BCAC、BG=BC+CG=BC+AC,BE=CE=AC,(BCAC)(BC+AC)=ABAC,即BC2AC2=ABAC;(1)设AB=5k、AC=1k,BC2AC2=ABAC,BC=2k,连接ED交BC于点M,四边形BDCE是菱形,DE垂直平分BC,则点E、O、M、D共线,在RtDMC中,DC=AC=1k,MC=BC=k,DM=,OM=ODDM=1k,在RtCOM中,由OM2+MC2=OC2得(1k)2+(k)2=12,解得:k=或k=0(舍),BC=2k=4;设OM=d,则MD=1d,MC2=OC2OM2=9d2,BC2=(2MC)2=164d2,AC2=DC2=DM2+CM2=(1d)2+9d2,由(2)得ABAC=BC2AC2=4d2+6d+18=4(d)2+,当d=,即OM=时,ABAC最大,最大值为,DC2=,AC=DC=,AB=,此时点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点19、见解析【解析】据1=2可得BAC=EAD,再加上条件AB=AE,C=D可证明ABCAED【详解】证明:1=2,1+EAC=2+EAC,即BAC=EAD在ABC和AED中,ABCAED(AAS)【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角20、(1)详见解析;(2)P= 【解析】试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.试题解析: (1)画树状图得:则(m,n)共有12种等可能的结果:(2,-1),(2,3),(2, 4),(-1,2),(-1,3),(1, 4),(3,2),(3,-1),(3, 4),(4,2),(4,-1),(4,3).(2)(m,n)在二、四象限的(2,-1),(2,3),(-1,2),(3,2),(3, 4),(4,2),(4,-1),(4,3),所选出的m,n在第二、三四象限的概率为:P=点睛:(1)利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).(2)定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P.(3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.21、1【解析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案【详解】原式=(1)2×+24=1+24=1【点睛】此题主要考查了实数运算,正确化简各数是解题关键22、 (1);(2).【解析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1) “美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,任取一个球,摸出球上的汉字刚好是“美”的概率P=(2)列表如下:美丽光明美-(美,丽)(光,美)(美,明)丽(美,丽)-(光,丽)(明,丽)光(美,光)(光,丽)-(光,明)明(美,明)(明,丽)(光,明)-根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比23、1【解析】根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可【详解】解:原式=11+34×=1【点睛】本题考查实数的运算及特殊角三角形函数值24、(1);(2)MCNC5;(3)a+b的最小值为2;(4)以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为【解析】(1)由题意得AOOB2、OC3、AC5、BC1,根据MCACtanA 、CN可得答案;(2)证ACMNCB得,由此即可求得答案;(3)设MCa、NCb,由(2)知ab5,由P是圆上异于A、B的动点知a0,可得b(a0),根据反比例函数的性质得a+b不存在最大值,当ab时,a+b最小,据此求解可得;(4)设该圆与AC的交点为D,连接DM、DN,证MDCDNC得,即MCNCDC25,即DC,据此知以MN为直径的一系列圆经过定点D,此顶点D在直线AB上且CD的长为【详解】(1)如图所示,根据题意知,AOOB2、OC3,则ACOA+OC5,BCOCOB1,AC直线l,ACMACN90°,MCACtanA5×,ABPNBC,BNCA30°,CN,则MNMC+CN+,故答案为:;(2)ACMNCB90°,ABNC,ACMNCB,即MCNCACBC5×15;(3)设MCa、NCb,由(2)知ab5,P是圆上异于A、B的动点,a0,b(a0),根据反比例函数的性质知,a+b不存在最大值,当ab时,a+b最小,由ab得a,解之得a(负值舍去),此时b,此时a+b的最小值为2;(4)如图,设该圆与AC的交点为D,连接DM、DN,MN为直径,MDN90°,则MDC+NDC90°,DCMDCN90°,MDC+DMC90°,NDCDMC,则MDCDNC,即MCNCDC2,由(2)知MCNC5,DC25,DC,以MN为直径的一系列圆经过定点D,此定点D在直线AB上且CD的长为【点睛】本题考查的是圆的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用、反比例函数的性质等知识点