山东省莒县重点名校2023届十校联考最后数学试题含解析.doc
-
资源ID:87994827
资源大小:801.50KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省莒县重点名校2023届十校联考最后数学试题含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列计算正确的是()A(a2)3a6Ba2a3a6Ca3+a4a7D(ab)3ab32如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )ABCD3如图,将ABC沿着点B到C的方向平移到DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A42B96C84D484点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A关于x轴对称B关于y轴对称C绕原点逆时针旋转D绕原点顺时针旋转5如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果1=30°,那么2的度数为( )A30°B40°C50°D60°6下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形 (4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A1 B2 C3 D47下列各式属于最简二次根式的有( )ABCD8如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A0.7米B1.5米C2.2米D2.4米9在平面直角坐标系中,已知点A(4,2),B(6,4),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是()A(2,1)B(8,4)C(8,4)或(8,4)D(2,1)或(2,1)10如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM4,AB6,则BD的长为( )A4B5C8D10二、填空题(共7小题,每小题3分,满分21分)11有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_.12如图,在ABC中,ACB90°,点D是CB边上一点,过点D作DEAB于点E,点F是AD的中点,连结EF、FC、CE若AD2,CFE90°,则CE_13如果抛物线y(k2)x2+k的开口向上,那么k的取值范围是_14比较大小:_(填“,“=“,“)15如图,A、B是反比例函数y(k>0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若SAOC1则k_16如图,BD是O的直径,BA是O的弦,过点A的切线交BD延长线于点C,OEAB于E,且AB=AC,若CD=2,则OE的长为_17如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上(1)AB的长等于_;(2)在ABC的内部有一点P,满足SPABSPBCSPCA =1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_三、解答题(共7小题,满分69分)18(10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同若前四局双方战成2:2,那么甲队最终获胜的概率是_;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?19(5分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修供电局距离抢修工地15千米抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度20(8分)一次函数yx的图象如图所示,它与二次函数yax24axc的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C(1)求点C的坐标;(2)设二次函数图象的顶点为D若点D与点C关于x轴对称,且ACD的面积等于3,求此二次函数的关系式;若CDAC,且ACD的面积等于10,求此二次函数的关系式21(10分) (1)计算:|1|(2017)0()13tan30°;(2)化简:()÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值22(10分)解方程(1);(2)23(12分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是 24(14分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:销售时段销售数量销售收入种型号种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润销售收入进货成本)(1)求、两种型号的电器的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型理解各种计算法则是解题的关键2、C【解析】试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图3、D【解析】由平移的性质知,BE=6,DE=AB=10,OE=DEDO=104=6,S四边形ODFC=S梯形ABEO=(AB+OE)BE=(10+6)×6=1故选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.4、C【解析】分析:根据旋转的定义得到即可详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角5、D【解析】如图,因为,1=30°,1+3=60°,所以3=30°,因为ADBC,所以3=4,所以4=30°,所以2=180°-90°-30°=60°,故选D.6、D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可详解:等腰三角形的两个底角相等,(1)正确; 对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误; 对角线相等的平行四边形为矩形,(3)错误; 圆的切线垂直于过切点的半径,(4)错误; 平分弦(不是直径)的直径垂直于弦,(5)错误 故选D点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理7、B【解析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可【详解】A选项:,故不是最简二次根式,故A选项错误;B选项:是最简二次根式,故B选项正确;C选项:,故不是最简二次根式,故本选项错误;D选项:,故不是最简二次根式,故D选项错误;故选:B【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键8、C【解析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在RtABD中,ADB=90°,AD=2米,BD2+AD2=AB2,BD2+22=6.25,BD2=2.25,BD0,BD=1.5米,CD=BC+BD=0.7+1.5=2.2米故选C【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.9、D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案【详解】点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把ABO缩小,点A的对应点A的坐标是:(-2,1)或(2,-1)故选D【点睛】此题考查了位似图形与坐标的关系此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k10、D【解析】利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度【详解】解:矩形ABCD的对角线AC,BD相交于点O,BAD=90°,点O是线段BD的中点,点M是AB的中点,OM是ABD的中位线,AD=2OM=1在直角ABD中,由勾股定理知:BD=故选:D【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、小林【解析】观察图形可知,小林的成绩波动比较大,故小林是新手故答案是:小林12、【解析】根据直角三角形的中点性质结合勾股定理解答即可.【详解】解:,点F是AD的中点, .故答案为: .【点睛】此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.13、k2【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k21【详解】因为抛物线y(k2)x2k的开口向上,所以k21,即k2,故答案为k2.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型14、<【解析】先比较它们的平方,进而可比较与的大小.【详解】()2=80,()2=100,80<100,<故答案为:<.【点睛】本题考查了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.15、2【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E则ADBE,AD=2BE=,B、E分别是AC、DC的中点ADCBEC,BE:AD=1:2,EC:CD=1:2,EC=DE=a,OC=3a,又A(a, ),B(2a, ),SAOC=AD×CO=×3a× =1,解得:k=216、【解析】连接OA,所以OAC90°,因为ABAC,所以BC,根据圆周角定理可知AOD2B2C,故可求出B和C的度数,在RtOAC中,求出OA的值,再在RtOAE中,求出OE的值,得到答案.【详解】连接OA,由题意可知OAC90°,ABAC,BC,根据圆周角定理可知AOD2B2C,OAC90°CAOD90°,C2C90°,故C30°B,在RtOAC中,sinC,OC2OA,OAOD,ODCD2OA,CDOA2,OBOA,OAEB30°,在RtOAE中,sinOAE,OA2OE,OEOA,故答案为.【点睛】本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA的值,从而利用直角三角形的三角函数的运用求出答案.17、; 答案见解析 【解析】(1)AB=故答案为(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G连接DN,EM,DG,DN与EM相交于点P,点P即为所求理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,PAB的面积=平行四边形ABME的面积,PBC的面积=平行四边形CDNB的面积,PAC的面积=PNG的面积=DGN的面积=平行四边形DEMG的面积,SPAB:SPBC:SPCA=1:2:1三、解答题(共7小题,满分69分)18、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率19、吉普车的速度为30千米/时.【解析】先设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时,列出方程求出x的值,再进行检验,即可求出答案【详解】解:设抢修车的速度为x千米/时,则吉普车的速度为15x千米/时.由题意得:.解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意. 答:吉普车的速度为30千米/时. 点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用为中考常见题型,要求学生牢固掌握注意检验20、(1)点C(1,);(1)yx1x; yx11x【解析】试题分析:(1)求得二次函数yax14axc对称轴为直线x1,把x1代入yx求得y=,即可得点C的坐标;(1)根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m) ,根据SACD3即可求得m的值,即求得点A的坐标,把A.D的坐标代入yax14axc得方程组,解得a、c的值即可得二次函数的表达式.设A(m,m)(m<1),过点A作AECD于E,则AE1m,CEm,根据勾股定理用m表示出AC的长,根据ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a0,则点D在点C下方,求点D的坐标;第二种情况,若a0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入yax14axc即可求得函数表达式.试题解析:(1)yax14axca(x1)14ac二次函数图像的对称轴为直线x1当x1时,yx,C(1,)(1)点D与点C关于x轴对称,D(1,),CD3.设A(m,m) (m<1),由SACD3,得×3×(1m)3,解得m0,A(0,0).由A(0,0)、 D(1,)得解得a,c0.yx1x.设A(m,m)(m<1),过点A作AECD于E,则AE1m,CEm,AC(1m),CDAC,CD(1m).由SACD10得×(1m)110,解得m1或m6(舍去),m1A(1,),CD5.若a0,则点D在点C下方,D(1,),由A(1,)、D(1,)得解得yx1x3.若a0,则点D在点C上方,D(1,),由A(1,)、D(1,)得解得yx11x.考点:二次函数与一次函数的综合题.21、(1)-2(2)a+3,7【解析】(1)先根据绝对值、零次方、负整数指数幂、立方根的意义和特殊角的三角函数值把每项化简,再按照实数的运算法则计算即可;(2)先根据分式的运算法则把()÷化简,再从2,3,4,5中选一个使原分式有意义的值代入计算即可.【详解】(1)原式1+1-4-3×+2=-2;(2)原式-÷(-)÷=×=a+3,a3,2,3,a4或a5,取a4,则原式7.【点睛】本题考查了实数的混合运算,分式的化简求值,熟练掌握特殊角的三角函数值、负整数指数幂、分式的运算法则是解答本题的关键.22、(1),;(2),【解析】(1)利用公式法求解可得;(2)利用因式分解法求解可得【详解】(1)解:,;(2)解:原方程化为:,因式分解得:,整理得:,或,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键23、(1)y=;y=x;(2);(1)2x0或x1;【解析】(1)过A作AMx轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可(1)根据A、B的横坐标结合图象即可得出答案【详解】解:(1)过A作AMx轴于M,则AM=1,OA=,由勾股定理得:OM=1,即A的坐标是(1,1),把A的坐标代入y=得:k=1,即反比例函数的解析式是y=把B(2,n)代入反比例函数的解析式得:n=,即B的坐标是(2,),把A、B的坐标代入y=ax+b得:,解得:k=b=,即一次函数的解析式是y=x(2)连接OB,y=x,当x=0时,y=,即OD=,AOB的面积是SBOD+SAOD=××2+××1=(1)一次函数的值大于反比例函数的值时x的取值范围是2x0或x1,故答案为2x0或x1【点睛】本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.24、(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台【解析】(1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;(2)设采购A种型号电器a台,则采购B种型号电器(50a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案【详解】解:(1)设A型电器销售单价为x元,B型电器销售单价y元,则 ,解得:,答:A型电器销售单价为200元,B型电器销售单价150元;(2)设A型电器采购a台,则160a120(50a)7500,解得:a,则最多能采购37台;(3)设A型电器采购a台,依题意,得:(200160)a(150120)(50a)1850,解得:a35,则35a,a是正整数,a36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解