山东省菏泽2023届高三六校第一次联考数学试卷含解析.doc
-
资源ID:87994889
资源大小:2.03MB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省菏泽2023届高三六校第一次联考数学试卷含解析.doc
2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,其中是虚数单位,则对应的点的坐标为( )ABCD2设全集U=R,集合,则( )Ax|-1 <x<4Bx|-4<x<1Cx|-1x4Dx|-4x13已知函数,且),则“在上是单调函数”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件4已知命题,则是( )A,B,.C,D,.5已知函数与的图象有一个横坐标为的交点,若函数的图象的纵坐标不变,横坐标变为原来的倍后,得到的函数在有且仅有5个零点,则的取值范围是( )ABCD6已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是( )ABCD7已知全集,集合,则( )ABCD8已知某几何体的三视图如图所示,则该几何体外接球的表面积为( )ABCD9从抛物线上一点 (点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为( )ABCD10已知数列的前n项和为,且对于任意,满足,则( )ABCD11设分别为的三边的中点,则( )ABCD12设,则关于的方程所表示的曲线是( )A长轴在轴上的椭圆B长轴在轴上的椭圆C实轴在轴上的双曲线D实轴在轴上的双曲线二、填空题:本题共4小题,每小题5分,共20分。13(5分)在平面直角坐标系中,过点作倾斜角为的直线,已知直线与圆相交于两点,则弦的长等于_14三棱柱中, ,侧棱底面,且三棱柱的侧面积为.若该三棱柱的顶点都在同一个球的表面上,则球的表面积的最小值为_15已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.16如图所示的流程图中,输出的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某企业原有甲、乙两条生产线,为了分析两条生产线的效果,先从两条生产线生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值该项指标值落在内的产品视为合格品,否则为不合格品乙生产线样本的频数分布表质量指标合计频数2184814162100(1)根据甲生产线样本的频率分布直方图,以从样本中任意抽取一件产品且为合格品的频率近似代替从甲生产线生产的产品中任意抽取一件产品且为合格品的概率,估计从甲生产线生产的产品中任取5件恰有2件为合格品的概率;(2)现在该企业为提高合格率欲只保留其中一条生产线,根据上述图表所提供的数据,完成下面的列联表,并判断是否有90%把握认为该企业生产的这种产品的质量指标值与生产线有关?若有90%把握,请从合格率的角度分析保留哪条生产线较好?甲生产线乙生产线合计合格品不合格品合计附:,0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87918(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.19(12分)在; 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在中,内角A,B,C的对边分别为a,b,c,且满足_,求的面积.20(12分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,21(12分)如图:在中,.(1)求角;(2)设为的中点,求中线的长.22(10分)选修4-5:不等式选讲已知函数的最大值为3,其中(1)求的值;(2)若,求证:参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用复数相等的条件求得,则答案可求【详解】由,得,对应的点的坐标为,故选:【点睛】本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题2、C【解析】解一元二次不等式求得集合,由此求得【详解】由,解得或.因为或,所以.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.3、C【解析】先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且) 令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.4、B【解析】根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题的否定为特称命题,可得,本题正确选项:【点睛】本题考查含量词的命题的否定,属于基础题.5、A【解析】根据题意,求出,所以,根据三角函数图像平移伸缩,即可求出的取值范围.【详解】已知与的图象有一个横坐标为的交点,则,若函数图象的纵坐标不变,横坐标变为原来的倍, 则,所以当时,在有且仅有5个零点, ,.故选:A.【点睛】本题考查三角函数图象的性质、三角函数的平移伸缩以及零点个数问题,考查转化思想和计算能力.6、A【解析】建立平面直角坐标系,求出直线,设出点,通过,找出与的关系通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线 , 设点, 所以 由得 ,即 ,所以,由及,解得,由二次函数的图像知,所以的取值范围是故选A【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用7、D【解析】根据函数定义域的求解方法可分别求得集合,由补集和交集定义可求得结果.【详解】,.故选:.【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.8、C【解析】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得, 三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.9、A【解析】根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.10、D【解析】利用数列的递推关系式判断求解数列的通项公式,然后求解数列的和,判断选项的正误即可【详解】当时,所以数列从第2项起为等差数列,所以,故选:【点睛】本题考查数列的递推关系式的应用、数列求和以及数列的通项公式的求法,考查转化思想以及计算能力,是中档题11、B【解析】根据题意,画出几何图形,根据向量加法的线性运算即可求解.【详解】根据题意,可得几何关系如下图所示:,故选:B【点睛】本题考查了向量加法的线性运算,属于基础题.12、C【解析】根据条件,方程即,结合双曲线的标准方程的特征判断曲线的类型【详解】解:k1,1+k>0,k2-10,方程,即,表示实轴在y轴上的双曲线,故选C【点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键二、填空题:本题共4小题,每小题5分,共20分。13、【解析】方法一:依题意,知直线的方程为,代入圆的方程化简得,解得或,从而得或,则方法二:依题意,知直线的方程为,代入圆的方程化简得,设,则,故.方法三:将圆的方程配方得,其半径,圆心到直线的距离,则.14、【解析】分析题意可知,三棱柱为正三棱柱,所以三棱柱的中心即为外接球的球心,设棱柱的底面边长为,高为,则三棱柱的侧面积为,球的半径表示为,再由重要不等式即可得球表面积的最小值【详解】如下图,三棱柱为正三棱柱设,三棱柱的侧面积为又外接球半径外接球表面积.故答案为: 【点睛】考查学生对几何体的正确认识,能通过题意了解到题目传达的意思,培养学生空间想象力,能够利用题目条件,画出图形,寻找外接球的球心以及半径,属于中档题15、【解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,则单调递增,当时,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意综上:的范围是,故答案为:,【点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题16、4【解析】根据流程图依次运行直到,结束循环,输出n,得出结果.【详解】由题:,结束循环,输出.故答案为:4【点睛】此题考查根据程序框图运行结果求输出值,关键在于准确识别循环结构和判断框语句.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.0081(2)见解析,保留乙生产线较好【解析】(1)先求出任取一件产品为合格品的频率,“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,恰好发生2次的概率用二项分布概率即可解决.(2)独立性检验算出的观测值即可判断.【详解】(1)根据甲生产线样本的频率分布直方图,样本中任取一件产品为合格品的频率为:设“从甲生产线生产的产品中任取一件且为合格品”为事件,事件发生的概率为,则由样本可估计那么“从甲生产线生产的产品中任取5件,恰有2件为合格品”就相当于进行5次独立重复试验,事件恰好发生2次,其概率为:(2)列联表:甲生产线乙生产线合计合格品9096186不合格品10414合计100100200的观测值,有90%把握认为该企业生产的这种产品的质量指标值与生产线有关由(1)知甲生产线的合格率为0.9,乙生产线的合格率为,保留乙生产线较好【点睛】此题考查独立重复性检验二项分布概率,独立性检验等知识点,认准特征代入公式即可,属于较易题目.18、(1)见解析,(2)最小正整数的值为35.【解析】(1)由等差中项可知,当时,得,整理后可得,从而证明为等差数列,继而可求.(2),则可求出,令,即可求出 的取值范围,进而求出最小值.【详解】解析:(1)由题意可得,当时,当时,整理可得,是首项为1,公差为1的等差数列,.(2)由(1)可得,解得,最小正整数的值为35.【点睛】本题考查了等差中项,考查了等差数列的定义,考查了 与 的关系,考查了裂项相消求和.当已知有 与 的递推关系时,常代入 进行整理.证明数列是等差数列时,一般借助数列,即后一项与前一项的差为常数.19、横线处任填一个都可以,面积为【解析】无论选哪一个,都先由正弦定理化边为角后,由诱导公式,展开后,可求得角,再由余弦定理求得,从而易求得三角形面积【详解】在横线上填写“”.解:由正弦定理,得.由,得.由,得.所以.又(若,则这与矛盾),所以.又,得.由余弦定理及,得,即.将代入,解得.所以.在横线上填写“”.解:由及正弦定理,得.又,所以有.因为,所以.从而有.又,所以由余弦定理及,得即.将代入,解得.所以.在横线上填写“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.将代入,解得.所以.【点睛】本题考查三角形面积公式,考查正弦定理、余弦定理,两角和的正弦公式等,正弦定理进行边角转换,求三角形面积时, 若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键20、(1)(2)详见解析【解析】由题意,根据平均数公式求得,再根据,参照数据求解.由题意得,获赠话费的可能取值为,求得相应的概率,列出分布列求期望.【详解】由题意得综上,由题意得,获赠话费的可能取值为,的分布列为:【点睛】本题主要考查正态分布和离散型随机变量的分布列及期望,还考查了运算求解的能力,属于中档题.21、(1);(2)【解析】(1)通过求出的值,利用正弦定理求出即可得角;(2)根据求出的值,由正弦定理求出边,最后在中由余弦定理即可得结果.【详解】(1),.由正弦定理,即.得,为钝角,为锐角,故.(2),.由正弦定理得,即得.在中由余弦定理得:,.【点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.22、(1)(2)见解析【解析】(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab1,再构造函数利用导数判断单调性求出最小值可证【详解】(1),. 当时,取得最大值. . (2)由(),得,. ,当且仅当时等号成立,. 令,.则在上单调递减. 当时,.【点睛】本题考查了绝对值不等式的解法,属中档题本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.