山西省晋中市榆社中学2022-2023学年高三3月份模拟考试数学试题含解析.doc
2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则( )A30°B45°C60°D75°2 “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( )ABCD3已知随机变量满足,.若,则( )A,B,C,D,4已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )ABCD5在直角坐标系中,已知A(1,0),B(4,0),若直线x+my1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( )AB3CD6在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为( )ABCD7已知函数,则( )ABCD8设M是边BC上任意一点,N为AM的中点,若,则的值为( )A1BCD9已知分别为圆与的直径,则的取值范围为( )ABCD10已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )ABCD11已知函数,则( )A1B2C3D412的展开式中,满足的的系数之和为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13展开式中的系数的和大于8而小于32,则_14已知ABC得三边长成公比为的等比数列,则其最大角的余弦值为_.15若非零向量,满足,则_.16若,则=_, = _.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在多面体中,四边形是正方形,平面,为的中点.(1)求证:;(2)求平面与平面所成角的正弦值.18(12分)设函数(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围19(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值20(12分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.21(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.22(10分)改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.求的值,并估计该城市驾驶员交通安全意识强的概率;已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;安全意识强安全意识不强合计男性女性合计用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.附:其中参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.2、A【解析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.3、B【解析】根据二项分布的性质可得:,再根据和二次函数的性质求解.【详解】因为随机变量满足,.所以服从二项分布,由二项分布的性质可得:,因为,所以,由二次函数的性质可得:,在上单调递减,所以.故选:B【点睛】本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题.4、D【解析】由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.5、D【解析】设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或.故选:.【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.6、A【解析】由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.7、A【解析】根据分段函数解析式,先求得的值,再求得的值.【详解】依题意,.故选:A【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.8、B【解析】设,通过,再利用向量的加减运算可得,结合条件即可得解.【详解】设,则有.又,所以,有.故选B.【点睛】本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.9、A【解析】由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【详解】如图,其中,所以.故选:A【点睛】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题10、B【解析】由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:,解得,或(舍去),直线的方程为,设直线与抛物线的另一个交点为,由,解得或,故直线被截得的弦长为故选:B【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.11、C【解析】结合分段函数的解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.12、B【解析】,有,三种情形,用中的系数乘以中的系数,然后相加可得【详解】当时,的展开式中的系数为当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为故选:B【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】由题意可得项的系数与二项式系数是相等的,利用题意,得出不等式组,求得结果.【详解】观察式子可知,故答案为:4.【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中项的系数和,属于基础题目.14、【解析】试题分析:根据题意设三角形的三边长分别设为为,所对的角为最大角,设为,则根据余弦定理得,故答案为.考点:余弦定理及等比数列的定义.15、1【解析】根据向量的模长公式以及数量积公式,得出,解方程即可得出答案.【详解】,即解得或(舍)故答案为:【点睛】本题主要考查了向量的数量积公式以及模长公式的应用,属于中档题.16、128 21 【解析】令,求得的值.利用展开式的通项公式,求得的值.【详解】令,得.展开式的通项公式为,当时,为,即.【点睛】本小题主要考查二项式展开式的通项公式,考查赋值法求解二项式系数有关问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)首先证明,平面.即可得到平面,.(2)以为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系,分别求出平面和平面的法向量,带入公式求解即可.【详解】(1)平面,平面,.又四边形是正方形,.,平面.平面,.又,为的中点,.,平面.平面,.(2)平面,平面.以为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系.如图所示:则,.,.设为平面的法向量,则,得,令,则.由题意知为平面的一个法向量,平面与平面所成角的正弦值为.【点睛】本题第一问考查线线垂直,先证线面垂直时解题关键,第二问考查二面角,建立空间直角坐标系是解题关键,属于中档题.18、(1);(2).【解析】(1)通过分类讨论去掉绝对值符号,进而解不等式组求得结果;(2)将不等式整理为,根据能成立思想可知,由此构造不等式求得结果.【详解】(1)当时,可化为,由,解得;由,解得;由,解得综上所述:所以原不等式的解集为(2),有解,即,又,实数的取值范围是【点睛】本题考查绝对值不等式的求解、根据不等式有解求解参数范围的问题;关键是明确对于不等式能成立的问题,通过分离变量的方式将问题转化为所求参数与函数最值之间的比较问题.19、(1)(2)【解析】(1)依题意,任意角的三角函数的定义可知,进而求出在利用余弦的和差公式即可求出.(2)根据钝角的终边与单位圆交于点,且点的横坐标是,得出,进而得出,利用正弦的和差公式即可求出,结合为锐角,为钝角,即可得出的值.【详解】解:因为锐角的终边与单位圆交于点,点的纵坐标是,所以由任意角的三角函数的定义可知,从而(1)于是(2)因为钝角的终边与单位圆交于点,且点的横坐标是,所以,从而于是因为为锐角,为钝角,所以从而【点睛】本题本题考查正弦函数余弦函数的定义,考查正弦余弦的两角和差公式,是基础题.20、(1)或;(2)或.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)根据绝对值三角不等式得最小值,再解含绝对值不等式可得的取值范围.试题解析:(1)等价于或或,解得:或.故不等式的解集为或.(2)因为:所以,由题意得:,解得或.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向21、【解析】由不存在逆矩阵,可得,再利用特征多项式求出特征值3,0,利用矩阵乘法运算即可.【详解】因为不存在逆矩阵,所以.矩阵的特征多项式为,令,则或,所以,即,所以,所以【点睛】本题考查矩阵的乘法及特征值、特征向量有关的问题,考查学生的运算能力,是一道容易题.22、,概率为;列联表详见解析,有的把握认为交通安全意识与性别有关;.【解析】根据频率和为列方程求得的值,计算得分在分以上的频率即可;根据题意填写列联表,计算的值,对照临界值得出结论;用分层抽样法求得抽取各分数段人数,用列举法求出基本事件数,计算所求的概率值.【详解】解: 解得. 所以,该城市驾驶员交通安全意识强的概率 根据题意可知,安全意识强的人数有,其中男性为人,女性为人,填写列联表如下:安全意识强安全意识不强合计男性女性合计 所以有的把握认为交通安全意识与性别有关. 由题意可知分数在,的分别为名和名, 所以分层抽取的人数分别为名和名, 设的为,的为,则基本事件空间为,共种, 设至少有人得分低于分的事件为,则事件包含的基本事件有,共种所以.【点睛】本题考查独立性检验应用问题,也考查了列举法求古典概型的概率问题,属于中档题.