山东省青岛六校联考2022-2023学年中考数学考前最后一卷含解析.doc
-
资源ID:87995443
资源大小:644.50KB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
山东省青岛六校联考2022-2023学年中考数学考前最后一卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若ABCABC,A=40°,C=110°,则B等于( )A30°B50°C40°D70°2下列计算正确的是()A2m+3n=5mn Bm2m3=m6 Cm8÷m6=m2 D(m)3=m33等腰中,D是AC的中点,于E,交BA的延长线于F,若,则的面积为( )A40B46C48D504如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A该班总人数为50B步行人数为30C乘车人数是骑车人数的2.5倍D骑车人数占20%5下列实数中是无理数的是()AB22C5.Dsin45°6关于反比例函数y=,下列说法中错误的是()A它的图象是双曲线B它的图象在第一、三象限Cy的值随x的值增大而减小D若点(a,b)在它的图象上,则点(b,a)也在它的图象上7如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()ABCD8如图,ABC中,AB=4,BC=6,B=60°,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,则平移的距离和旋转角的度数分别为( )A4,30°B2,60°C1,30°D3,60°9已知关于x的二次函数yx22x2,当axa+2时,函数有最大值1,则a的值为()A1或1B1或3C1或3D3或310七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A甲组同学身高的众数是160B乙组同学身高的中位数是161C甲组同学身高的平均数是161D两组相比,乙组同学身高的方差大11若一个多边形的内角和为360°,则这个多边形的边数是( )A3 B4 C5 D612在下列二次函数中,其图象的对称轴为的是ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知A(4,y1),B(1,y2)是反比例函数y=图象上的两个点,则y1与y2的大小关系为_14分解因式:_.15如图,在ABC中,DM垂直平分AC,交BC于点D,连接AD,若C=28°,AB=BD,则B的度数为_度16在实数范围内分解因式:x2y2y_17用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为_.18如图,已知AB是O的直径,点C在O上,过点C的切线与AB的延长线交于点P,连接AC,若A=30°,PC=3,则BP的长为 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在矩形纸片ABCD中,AB=6,BC=1把BCD沿对角线BD折叠,使点C落在C处,BC交AD于点G;E、F分别是CD和BD上的点,线段EF交AD于点H,把FDE沿EF折叠,使点D落在D处,点D恰好与点A重合(1)求证:ABGCDG;(2)求tanABG的值;(3)求EF的长20(6分)某船的载重为260吨,容积为1000m1现有甲、乙两种货物要运,其中甲种货物每吨体积为8m1,乙种货物每吨体积为2m1,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙)21(6分)如图,半圆D的直径AB4,线段OA7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m当半圆D与数轴相切时,m 半圆D与数轴有两个公共点,设另一个公共点是C直接写出m的取值范围是 当BC2时,求AOB与半圆D的公共部分的面积当AOB的内心、外心与某一个顶点在同一条直线上时,求tanAOB的值22(8分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?23(8分)如图,在RtABC中,C=90°,以AC为直径作O,交AB于D,过点O作OEAB,交BC于E(1)求证:ED为O的切线;(2)若O的半径为3,ED=4,EO的延长线交O于F,连DF、AF,求ADF的面积24(10分)如图所示,点B、F、C、E在同一直线上,ABBE,DEBE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE25(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分 组频数频率第一组(0x15)30.15第二组(15x30)6a第三组(30x45)70.35第四组(45x60)b0.20(1)频数分布表中a=_,b=_,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?26(12分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D求a,b的值及反比例函数的解析式;若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由27(12分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】利用三角形内角和求B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:B=30°,根据相似三角形的性质可得:B=B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.2、C【解析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解【详解】解:A、2m与3n不是同类项,不能合并,故错误;B、m2m3=m5,故错误;C、正确;D、(-m)3=-m3,故错误;故选:C【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3、C【解析】CEBD,BEF=90°,BAC=90°,CAF=90°,FAC=BAD=90°,ABD+F=90°,ACF+F=90°,ABD=ACF,又ABAC,ABDACF,AD=AF,AB=AC,D为AC中点,AB=AC=2AD=2AF,BF=AB+AF=12,3AF=12,AF=4,AB=AC=2AF=8,SFBC= ×BF×AC=×12×8=48,故选C4、B【解析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确由于该题选择错误的,故选B【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题5、D【解析】A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D6、C【解析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答【详解】A反比例函数的图像是双曲线,正确;Bk=20,图象位于一、三象限,正确;C在每一象限内,y的值随x的增大而减小,错误;Dab=ba,若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确故选C【点睛】本题主要考查反比例函数的性质注意:反比例函数的增减性只指在同一象限内7、D【解析】分析:根据相似三角形的性质进行解答即可详解:在平行四边形ABCD中,AECD, EAFCDF, AFBC,EAFEBC, 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.8、B【解析】试题分析:B=60°,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,ABC=60°,AB=AB=AC=4,ABC是等边三角形,BC=4,BAC=60°,BB=64=2,平移的距离和旋转角的度数分别为:2,60°故选B考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定9、A【解析】分析:详解:当axa2时,函数有最大值1,1x22x2,解得: ,即-1x3, a=-1或a+2=-1, a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.10、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得【详解】A甲组同学身高的众数是160,此选项正确;B乙组同学身高的中位数是161,此选项正确;C甲组同学身高的平均数是161,此选项正确;D甲组的方差为,乙组的方差为,甲组的方差大,此选项错误故选D【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键11、B【解析】利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)×180°=360°, 解得n=4; 故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.12、A【解析】y=(x+2)2的对称轴为x=2,A正确;y=2x22的对称轴为x=0,B错误;y=2x22的对称轴为x=0,C错误;y=2(x2)2的对称轴为x=2,D错误故选A1二、填空题:(本大题共6个小题,每小题4分,共24分)13、y1y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题详解:反比例函数y=-,-40,在每个象限内,y随x的增大而增大,A(-4,y1),B(-1,y1)是反比例函数y=-图象上的两个点,-4-1,y1y1,故答案为:y1y1点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答14、 (x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案为(x+y)(x-y).15、1【解析】根据线段垂直平分线上的点到两端点的距离相等可得ADCD,等边对等角可得DACC,三角形的一个外角等于与它不相邻的两个内角的和求出ADBCDAC,再次根据等边对等角可得可得ADBBAD,然后利用三角形的内角和等于180°列式计算即可得解【详解】DM垂直平分AC,ADCD,DACC28°,ADBCDAC28°28°56°,ABBD,ADBBAD56°,在ABD中,B180°BADADB180°56°56°1°故答案为1【点睛】本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键16、y(x+)(x) 【解析】先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解【详解】x2y-2y=y(x2-2)=y(x+)(x-)故答案为y(x+)(x-)【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止17、(a+b)2(ab)24ab【解析】根据长方形面积公式列式,根据面积差列式,得出结论【详解】S阴影4S长方形4ab,S阴影S大正方形S空白小正方形(a+b)2(ba)2,由得:(a+b)2(ab)24ab故答案为(a+b)2(ab)24ab【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出18、【解析】试题分析:连接OC,已知OA=OC,A=30°,所以OCA=A=30°,由三角形外角的性质可得COB=A+ACO=60°,又因PC是O切线,可得PCO=90°,P=30°,再由PC=3,根据锐角三角函数可得OC=PCtan30°=,PC=2OC=2,即可得PB=POOB=.考点:切线的性质;锐角三角函数三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析(2)7/24(3)25/6【解析】(1)证明:BDC由BDC翻折而成, C=BAG=90°,CD=AB=CD,AGB=DGC,ABG=ADE。在ABGCDG中,BAG=C,AB= CD,ABG=AD C,ABGCDG(ASA)。(2)解:由(1)可知ABGCDG,GD=GB,AG+GB=AD。设AG=x,则GB=1x,在RtABG中,AB2+AG2=BG2,即62+x2=(1x)2,解得x=。(3)解:AEF是DEF翻折而成,EF垂直平分AD。HD=AD=4。tanABG=tanADE=。EH=HD×=4×。EF垂直平分AD,ABAD,HF是ABD的中位线。HF=AB=×6=3。EF=EH+HF=。(1)根据翻折变换的性质可知C=BAG=90°,CD=AB=CD,AGB=DGC,故可得出结论。(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在RtABG中利用勾股定理即可求出AG的长,从而得出tanABG的值。(3)由AEF是DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tanABG的值即可得出EH的长,同理可得HF是ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。20、这艘船装甲货物80吨,装乙货物180吨【解析】根据题意先列二元一次方程,再解方程即可.【详解】解:设这艘船装甲货物x吨,装乙货物y吨,根据题意,得解得答:这艘船装甲货物80吨,装乙货物180吨【点睛】此题重点考查学生对二元一次方程的应用能力,熟练掌握二元一次方程的解法是解题的关键.21、(1);(2);AOB与半圆D的公共部分的面积为;(3)tanAOB的值为或【解析】(1)根据题意由勾股定理即可解答(2)根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可如图,连接DC,得出BCD为等边三角形,可求出扇形ADC的面积,即可解答(3)根据题意如图1,当OBAB时,内心、外心与顶点B在同一条直线上,作AHOB于点H,设BHx,列出方程求解即可解答如图2,当OBOA时,内心、外心与顶点O在同一条直线上,作AHOB于点H,设BHx,列出方程求解即可解答【详解】(1)当半圆与数轴相切时,ABOB,由勾股定理得m ,故答案为 (2)半圆D与数轴相切时,只有一个公共点,此时m,当O、A、B三点在数轴上时,m7+411,半圆D与数轴有两个公共点时,m的取值范围为故答案为如图,连接DC,当BC2时,BCCDBD2,BCD为等边三角形,BDC60°,ADC120°,扇形ADC的面积为 , ,AOB与半圆D的公共部分的面积为 ;(3)如图1,当OBAB时,内心、外心与顶点B在同一条直线上,作AHOB于点H,设BHx,则72(4+x)242x2,解得x ,OH ,AH ,tanAOB,如图2,当OBOA时,内心、外心与顶点O在同一条直线上,作AHOB于点H,设BHx,则72(4x)242x2,解得x ,OH,AH,tanAOB综合以上,可得tanAOB的值为或【点睛】此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线22、(1)每行驶1千米纯用电的费用为0.26元(2)至少需用电行驶74千米【解析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题【详解】(1)设每行驶1千米纯用电的费用为x元,根据题意得:=解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(y)×(0.26+0.50)39解得:y74,即至少用电行驶74千米23、(1)见解析;(2)ADF的面积是【解析】试题分析:(1)连接OD,CD,求出BDC=90°,根据OEAB和OA=OC求出BE=CE,推出DE=CE,根据SSS证ECOEDO,推出EDO=ACB=90°即可;(2)过O作OMAB于M,过F作FNAB于N,求出OM=FN,求出BC、AC、AB的值,根据sinBAC,求出OM,根据cosBAC,求出AM,根据垂径定理求出AD,代入三角形的面积公式求出即可试题解析:(1)证明:连接OD,CD,AC是O的直径,CDA=90°=BDC,OEAB,CO=AO,BE=CE,DE=CE,在ECO和EDO中 ,ECOEDO,EDO=ACB=90°,即ODDE,OD过圆心O,ED为O的切线(2)过O作OMAB于M,过F作FNAB于N,则OMFN,OMN=90°,OEAB,四边形OMFN是矩形,FN=OM,DE=4,OC=3,由勾股定理得:OE=5,AC=2OC=6,OEAB,OECABC,AB=10,在RtBCA中,由勾股定理得:BC=8,sinBAC=,即 ,OM=FN,cosBAC=,AM= 由垂径定理得:AD=2AM=,即ADF的面积是AD×FN=××=答:ADF的面积是【点睛】考查了切线的性质和判定,勾股定理,三角形的面积,垂径定理,直角三角形的斜边上中线性质,全等三角形的性质和判定等知识点的运用,通过做此题培养了学生的分析问题和解决问题的能力24、证明见解析【解析】试题分析:证明三角形ABCDEF,可得.试题解析:证明:,BC=EF,,B=E=90°,AC=DF,ABCDEF, AB=DE.25、0.3 4 【解析】(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案【详解】(1)a=10.150.350.20=0.3;总人数为:3÷0.15=20(人),b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,所选两人正好都是甲班学生的概率是:=【点睛】本题考查了列表法或树状图法求概率以及条形统计图的知识用到的知识点为:概率=所求情况数与总情况数之比26、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP×3×|n1|,SBDP×1×|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k1×33,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC×|xPxA|×3×|n1|,SBDPBD×|xBxP|×1×|3n|,SACPSBDP,×3×|n1|×1×|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键27、CD的长度为1717cm【解析】在直角三角形中用三角函数求出FD,BE的长,而FCAEABBE,而CDFCFD,从而得到答案.【详解】解:由题意,在RtBEC中,E=90°,EBC=60°,BCE=30°,tan30°=,BE=ECtan30°=51×=17(cm);CF=AE=34+BE=(34+17)cm,在RtAFD中,FAD=45°,FDA=45°,DF=AF=EC=51cm,则CD=FCFD=34+1751=1717,答:CD的长度为1717cm【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.