山东省部分地区重点中学2022-2023学年中考二模数学试题含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,以O为圆心的圆与直线交于A、B两点,若OAB恰为等边三角形,则弧AB的长度为( )ABCD2如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中的值是( )ABCD3菱形的两条对角线长分别是6cm和8cm,则它的面积是()A6cm2B12cm2C24cm2D48cm24如下字体的四个汉字中,是轴对称图形的是( )ABCD5“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根苏科版数学九年级(下册)P21”参考上述教材中的话,判断方程x22x=2实数根的情况是 ( )A有三个实数根B有两个实数根C有一个实数根D无实数根63月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战将数据30亿用科学记数法表示为()A3×109B3×108C30×108D0.3×10107下列运算正确的是()A5abab=4Ba6÷a2=a4CD(a2b)3=a5b38 “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为 ABCD9我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()ABCD10把不等式组的解集表示在数轴上,正确的是()ABCD11下列运算正确的是( )A=x5BC·=D3+2 12如图,在ABC中,B90°,AB3cm,BC6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则PBQ的面积S随出发时间t的函数关系图象大致是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13半径为2的圆中,60°的圆心角所对的弧的弧长为_.14函数中,自变量x的取值范围是_15如图,DACE于点A,CDAB,1=30°,则D=_16一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角_。17如图,在ABCD中,AC与BD交于点M,点F在AD上,AF6cm,BF12cm,FBMCBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动点P运动到F点时停止运动,点Q也同时停止运动当点P运动_秒时,以点P、Q、E、F为顶点的四边形是平行四边形18已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_厘米三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)(1)计算:(1)0|2|+;(2)如图,在等边三角形ABC中,点D,E分别是边BC,AC的中点,过点E作EFDE,交BC的延长线于点F,求F的度数20(6分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率21(6分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数22(8分)实践:如图ABC是直角三角形,ACB90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.综合运用:在你所作的图中,AB与O的位置关系是_ .(直接写出答案)若AC=5,BC=12,求O 的半径.23(8分)如图,在平面直角坐标系中,直线yx+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线yx+2上一点,直线yx+b过点C求m和b的值;直线yx+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动设点P的运动时间为t秒若点P在线段DA上,且ACP的面积为10,求t的值;是否存在t的值,使ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由24(10分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C)他们各自在这三项活动中任选一个,每项活动被选中的可能性相同(1)小明选择去郊游的概率为多少;(2)请用树状图或列表法求小明和小亮的选择结果相同的概率25(10分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作ABx轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P求反比例函数y=的表达式;求点B的坐标;求OAP的面积26(12分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tan的值测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度(参考数据sin26.6°0.45,tan26.6°0.50;sin37°0.60,tan37°0.75)27(12分)试探究:小张在数学实践活动中,画了一个ABC,ACB90°,BC1,AC2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE ;此时小张发现AE2ACEC,请同学们验证小张的发现是否正确拓展延伸:小张利用图1中的线段AC及点E,构造AEEFFC,连接AF,得到图2,试完成以下问题:(1)求证:ACFFCE;(2)求A的度数;(3)求cosA的值;应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】过点作, , , 为等腰直角三角形, , 为等边三角形, , 故选C.2、D【解析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.3、C【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积【详解】根据对角线的长可以求得菱形的面积,根据S=ab=×6cm×8cm=14cm1故选:C【点睛】考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.4、A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形故选A考点:轴对称图形5、C【解析】试题分析:由得,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.6、A【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】将数据30亿用科学记数法表示为,故选A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值7、B【解析】由整数指数幂和分式的运算的法则计算可得答案.【详解】A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;C项,根据分式的加法法则可得:,故C项错误;D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;故本题正确答案为B.【点睛】幂的运算法则:(1) 同底数幂的乘法: (m、n都是正整数)(2)幂的乘方:(m、n都是正整数)(3)积的乘方: (n是正整数)(4)同底数幂的除法:(a0,m、n都是正整数,且m>n)(5)零次幂:(a0)(6) 负整数次幂: (a0, p是正整数).8、C【解析】分析:一个绝对值大于10的数可以表示为的形式,其中为整数确定的值时,整数位数减去1即可当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数详解:1800000这个数用科学记数法可以表示为 故选C 点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.9、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到矩形的图形【详解】A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误故选C【点睛】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答10、A【解析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可【详解】 由,得x2,由,得x1,所以不等式组的解集是:2x1不等式组的解集在数轴上表示为:故选A【点睛】本题考查的是解一元一次不等式组熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键11、B【解析】根据幂的运算法则及整式的加减运算即可判断.【详解】A. =x6,故错误;B. ,正确;C. ·=,故错误; D. 3+2 不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.12、C【解析】根据题意表示出PBQ的面积S与t的关系式,进而得出答案【详解】由题意可得:PB3t,BQ2t,则PBQ的面积SPBBQ(3t)×2tt2+3t,故PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下故选C【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据弧长公式可得:=,故答案为.14、x1【解析】试题分析:二次根号下的数为非负数,二次根式才有意义,故需要满足考点:二次根式、分式有意义的条件点评:解答本题的关键是熟练掌握二次根号下的数为非负数,二次根式才有意义;分式的分母不能为0,分式才有意义.15、60°【解析】先根据垂直的定义,得出BAD=60°,再根据平行线的性质,即可得出D的度数【详解】DACE,DAE=90°,1=30°,BAD=60°,又ABCD,D=BAD=60°,故答案为60°【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等16、288°【解析】母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.【详解】解:如图所示,在RtSOA中,SO=9,SA=15;则: 设侧面属开图扇形的国心角度数为n,则由 得n=288°故答案为:288°.【点睛】本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.17、3或1【解析】由四边形ABCD是平行四边形得出:ADBC,AD=BC,ADB=CBD,又由FBM=CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果【详解】解:四边形ABCD是平行四边形,ADBC,AD=BC,ADB=CBD,FBM=CBM,FBD=FDB,FB=FD=12cm,AF=6cm,AD=18cm,点E是BC的中点,CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1故答案为3或1【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识注意掌握分类讨论思想的应用是解此题的关键18、1或5.【解析】小正方形的高不变,根据面积即可求出小正方形平移的距离【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷21,如图,小正方形平移距离为1厘米;如图,小正方形平移距离为4+15厘米故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变画出图形即可直观解答三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)1+3;(2)30°【解析】(1) 根据零指数幂、 绝对值、 二次根式的性质求出每一部分的值, 代入求出即可;(2)根据平行线的性质可得EDC=B=,根据三角形内角和定理即可求解;【详解】解:(1)原式=12+3=1+3;(2)ABC是等边三角形,B=60°,点D,E分别是边BC,AC的中点,DEAB,EDC=B=60°,EFDE,DEF=90°,F=90°EDC=30°【点睛】(1) 主要考查零指数幂、 绝对值、 二次根式的性质;(2)考查平行线的性质和三角形内角和定理.20、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4).【解析】试题分析:(1)用B的频数除以B所占的百分比即可求得结论;(2)分别求得C的频数及其所占的百分比即可补全统计图;(3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;(4)列出树形图即可求得结论试题解析:(1)60÷10%=600(人)答:本次参加抽样调查的居民有600人(2)如图;(3),360°×(110%30%40%)=72°(4)如图;(列表方法略,参照给分)P(C粽)=答:他第二个吃到的恰好是C粽的概率是考点:1条形统计图;2用样本估计总体;3扇形统计图;4列表法与树状图法21、(1)一共调查了300名学生(2)(3)体育部分所对应的圆心角的度数为48°(4)1800名学生中估计最喜爱科普类书籍的学生人数为1【解析】(1)用文学的人数除以所占的百分比计算即可得解(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可(3)用体育所占的百分比乘以360°,计算即可得解(4)用总人数乘以科普所占的百分比,计算即可得解【详解】解:(1)90÷30%=300(名),一共调查了300名学生(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名补全折线图如下:(3)体育部分所对应的圆心角的度数为:×360°=48°(4)1800×=1(名),1800名学生中估计最喜爱科普类书籍的学生人数为122、(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)O 的半径为.【解析】综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与O的位置关系是相切;(2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可【详解】(1)作BAC的平分线,交BC于点O;以O为圆心,OC为半径作圆AB与O的位置关系是相切(2)相切;AC=5,BC=12,AD=5,AB=13,DB=AB-AD=13-5=8,设半径为x,则OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=答:O的半径为【点睛】本题考查了1作图复杂作图;2角平分线的性质;3勾股定理;4切线的判定23、(1)4,5;(2)7;4或 或或8.【解析】分别令可得b和m的值;根据的面积公式列等式可得t的值;存在,分三种情况:当时,如图1,当时,如图2,当时,如图3,分别求t的值即可【详解】把点代入直线中得:,点,直线过点C,;由题意得:,中,当时,中,当时,的面积为10,则t的值7秒;存在,分三种情况:当时,如图1,过C作于E,即;当时,如图2,;当时,如图3,即;综上,当秒或秒或秒或8秒时,为等腰三角形【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题24、(1);(2).【解析】(1)利用概率公式直接计算即可;(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案【详解】(1)小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,小明选择去郊游的概率=;(2)列表得: ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,所以小明和小亮的选择结果相同的概率=【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比25、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)OAP的面积=1【解析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由ABx轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得【详解】(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作ACx轴于点C,则OC=4、AC=3,OA=1,ABx轴,且AB=OA=1,点B的坐标为(9,3);(3)点B坐标为(9,3),OB所在直线解析式为y=x,由可得点P坐标为(6,2),(负值舍去),过点P作PDx轴,延长DP交AB于点E,则点E坐标为(6,3),AE=2、PE=1、PD=2,则OAP的面积=×(2+6)×3×6×2×2×1=1【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.26、【解析】过点P作PDOC于D,PEOA于E,则四边形ODPE为矩形,先解RtPBD,得出BD=PDtan26.6°;解RtCBD,得出CD=PDtan37°;再根据CDBD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在APE中利用三角函数的定义即可求解【详解】解:如图,过点P作PDOC于D,PEOA于E,则四边形ODPE为矩形在RtPBD中,BDP=90°,BPD=26.6°,BD=PDtanBPD=PDtan26.6°在RtCBD中,CDP=90°,CPD=37°,CD=PDtanCPD=PDtan37°CDBD=BC,PDtan37°PDtan26.6°=10.75PD0.50PD=1,解得PD=2BD=PDtan26.6°2×0.50=3OB=220,PE=OD=OBBD=4OE=PD=2,AE=OEOA=2200=527、(1)小张的发现正确;(2)详见解析;(3)A36°;(4)【解析】尝试探究:根据勾股定理计算即可;拓展延伸:(1)由AE2ACEC,推出 ,又AEFC,推出 ,即可解问题;(2)利用相似三角形的性质即可解决问题;(3)如图,过点F作FMAC交AC于点M,根据cosA ,求出AM、AF即可;应用迁移:利用(3)中结论即可解决问题;【详解】解:尝试探究:1;ACB90°,BC1,AC2,AB,ADAE,AE2()262,ACEC2×2()6 ,AE2ACEC,小张的发现正确;拓展延伸:(1)AE2ACEC,AEFC,又CC,ACFFCE;(2)ACFFCE,AFCCEF,又EFFC,CCEF,AFCC,ACAF,AEEF,AAFE,FEC2A,EFFC,C2A,AFCC2A,AFC+C+A180°,A36°;(3)如图,过点F作FMAC交AC于点M,由尝试探究可知AE ,EC,EFFC,由(2)得:ACAF2,ME ,AM ,cosA ;应用迁移:正十边形的中心角等于 36°,且是半径为2的圆内接正十边形,如图,当点A是圆内接正十边形的圆心,AC和AF都是圆的半径,FC是正十边形的边长时,设AFAC2,FCEFAEx,ACFFCE, , , ,半径为2的圆内接正十边形的边长为【点睛】本题考查相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用数形结合的思想思考问题,属于中考压轴题